Shi Jian-Yu, Zhang An-Qi, Zhang Shao-Wu, Mao Kui-Tao, Yiu Siu-Ming
School of Life Sciences, Northwestern Polytechnical University, Xi'An, China.
School of Automations, Northwestern Polytechnical University, Xi'An, China.
BMC Syst Biol. 2018 Dec 31;12(Suppl 9):136. doi: 10.1186/s12918-018-0663-x.
During the identification of potential candidates, computational prediction of drug-target interactions (DTIs) is important to subsequent expensive validation in wet-lab. DTI screening considers four scenarios, depending on whether the drug is an existing or a new drug and whether the target is an existing or a new target. However, existing approaches have the following limitations. First, only a few of them can address the most difficult scenario (i.e., predicting interactions between new drugs and new targets). More importantly, none of the existing approaches could provide the explicit information for understanding the mechanism of forming interactions, such as the drug-target feature pairs contributing to the interactions.
In this paper, we propose a Triple Matrix Factorization-based model (TMF) to tackle these problems. Compared with former state-of-the-art predictive methods, TMF demonstrates its significant superiority by assessing the predictions on four benchmark datasets over four kinds of screening scenarios. Also, it exhibits its outperformance by validating predicted novel interactions. More importantly, by using PubChem fingerprints of chemical structures as drug features and occurring frequencies of amino acid trimer as protein features, TMF shows its ability to find out the features determining interactions, including dominant feature pairs, frequently occurring substructures, and conserved triplet of amino acids.
Our TMF provides a unified framework of DTI prediction for all the screening scenarios. It also presents a new insight for the underlying mechanism of DTIs by indicating dominant features, which play important roles in the forming of DTI.
在潜在候选物的识别过程中,药物-靶点相互作用(DTIs)的计算预测对于后续在湿实验室中进行的昂贵验证至关重要。DTI筛选考虑四种情况,这取决于药物是现有药物还是新药,以及靶点是现有靶点还是新靶点。然而,现有方法存在以下局限性。首先,其中只有少数方法能够处理最困难的情况(即预测新药与新靶点之间的相互作用)。更重要的是,现有方法均无法提供用于理解相互作用形成机制的明确信息,例如促成相互作用的药物-靶点特征对。
在本文中,我们提出了一种基于三重矩阵分解的模型(TMF)来解决这些问题。与以前的最先进预测方法相比,TMF通过在四种筛选情况下对四个基准数据集的预测评估,展示了其显著的优越性。此外,通过验证预测的新型相互作用,它也表现出了出色的性能。更重要的是,通过使用化学结构的PubChem指纹作为药物特征以及氨基酸三聚体的出现频率作为蛋白质特征,TMF展示了其找出决定相互作用的特征的能力,包括主导特征对、频繁出现的子结构以及保守的氨基酸三联体。
我们的TMF为所有筛选情况提供了一个统一的DTI预测框架。它还通过指出主导特征,为DTIs的潜在机制提供了新的见解,这些主导特征在DTI的形成中起着重要作用。