Earth Science Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109;
Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):915-922. doi: 10.1073/pnas.1812470116. Epub 2018 Dec 31.
Dispersal provides a key mechanism for geographical range shifts in response to changing environmental conditions. For mangroves, which are highly susceptible to climate change, the spatial scale of dispersal remains largely unknown. Here we use a high-resolution, eddy- and tide-resolving numerical ocean model to simulate mangrove propagule dispersal across the global ocean and generate connectivity matrices between mangrove habitats using a range of floating periods. We find high rates of along-coast transport and transoceanic dispersal across the Atlantic, Pacific, and Indian Oceans. No connectivity is observed between populations on either side of the American and African continents. Archipelagos, such as the Galapagos and those found in Polynesia, Micronesia, and Melanesia, act as critical stepping-stones for dispersal across the Pacific Ocean. Direct and reciprocal dispersal routes across the Indian Ocean via the South Equatorial Current and seasonally reversing monsoon currents, respectively, allow connectivity between western Indian Ocean and Indo-West Pacific sites. We demonstrate the isolation of the Hawaii Islands and help explain the presence of mangroves on the latitudinal outlier Bermuda. Finally, we find that dispersal distance and connectivity are highly sensitive to the minimum and maximum floating periods. We anticipate that our findings will guide future research agendas to quantify biophysical factors that determine mangrove dispersal and connectivity, including the influence of ocean surface water properties on metabolic processes and buoyancy behavior, which may determine the potential of viably reaching a suitable habitat. Ultimately, this will lead to a better understanding of global mangrove species distributions and their response to changing climate conditions.
扩散为应对环境变化而进行地理分布范围变化提供了关键机制。对于极易受到气候变化影响的红树林来说,扩散的空间尺度在很大程度上仍不清楚。在这里,我们使用高分辨率的、包含涡旋和潮流的数值海洋模型来模拟全球海洋中红树林繁殖体的扩散,并使用一系列浮动时间生成红树林栖息地之间的连通性矩阵。我们发现,沿海岸的传输和跨越大西洋、太平洋和印度洋的远洋扩散率很高。在美洲和非洲大陆两侧的种群之间没有观察到连通性。加拉帕戈斯群岛和波利尼西亚、密克罗尼西亚和美拉尼西亚群岛等群岛是跨越大西洋扩散的关键踏脚石。通过南赤道流和季节性反转季风流的直接和相互扩散途径,允许印度洋西部和印度-西太平洋地区之间的连接。我们证明了夏威夷群岛的孤立性,并有助于解释百慕大存在红树林的原因。最后,我们发现扩散距离和连通性对最小和最大浮动时间高度敏感。我们预计,我们的发现将指导未来的研究议程,以量化决定红树林扩散和连通性的生物物理因素,包括海洋表面水特性对代谢过程和浮力行为的影响,这可能决定红树林繁殖体是否有能力到达合适的栖息地。最终,这将有助于更好地了解全球红树林物种的分布及其对气候变化条件的响应。