CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France.
Carbohydr Polym. 2019 Mar 1;207:276-287. doi: 10.1016/j.carbpol.2018.11.085. Epub 2018 Nov 27.
Hyaluronic acid (HA) is widely investigated due to its high potential for wound dressing applications. The fabrication of biomimetic HA-based scaffolds by electrospinning is thus extensively studied. However, HA is often dissolved in toxic organic solvents to allow the efficient production of electrospun nanofibers. Indeed, although HA is soluble in water, its ionic nature leading to long-range electrostatic interactions and the presence of counter ions induce a dramatic increase of the viscosity of aqueous HA solutions without insuring enough chain entanglements necessary for a stable and efficient electrospinning. In this study, biocompatible insoluble HA-based nanofibers were fabricated by electrospinning in pure water. To this end, poly(vinyl alcohol) (PVA) was added as a carrier polymer and it was found that the addition of hydroxypropyl-βcyclodextrin (HPβCD) stabilized the process of electrospinning and led to the efficient formation of uniform nanofibrous scaffolds. An in situ crosslinking process of the scaffolds is also proposed, insuring a whole fabrication process without any toxicity. Furthermore, the beneficial presence of HPβCD in the HA-based scaffolds paves the way for wound dressing applications with controlled drug encapsulation-release properties. As a proof of concept, naproxen (NAP), a non-steroidal anti-inflammatory drug was chosen as a model drug. NAP was impregnated into the scaffolds either in aqueous solution or under supercritical CO. The resulting functional scaffolds showed a regular drug release profile along several days without losing the fibrous structure. This study proposes a simple approach to form stable HA-based nanofibrous scaffolds embedding HPβCD using water as the only solvent, enabling the development of safe functional wound dressings.
透明质酸(HA)因其在伤口敷料应用方面的巨大潜力而受到广泛研究。因此,通过静电纺丝来制造仿生 HA 基支架得到了广泛的研究。然而,HA 通常溶解在有毒有机溶剂中,以允许高效生产静电纺丝纳米纤维。事实上,尽管 HA 可溶于水,但由于其离子性质导致长程静电相互作用以及抗衡离子的存在,会极大地增加水合 HA 溶液的粘度,而不能确保足够的链缠结,从而无法实现稳定且高效的静电纺丝。在本研究中,通过在纯水中静电纺丝来制备具有生物相容性的不溶性 HA 基纳米纤维。为此,添加了聚乙烯醇(PVA)作为载体聚合物,发现添加羟丙基-β-环糊精(HPβCD)可以稳定静电纺丝过程,并导致均匀纳米纤维支架的高效形成。还提出了支架的原位交联过程,确保了整个制造过程无毒性。此外,HPβCD 在 HA 基支架中的有益存在为具有控制药物包封-释放性能的伤口敷料应用铺平了道路。作为概念验证,选择非甾体抗炎药萘普生(NAP)作为模型药物。NAP 要么以水溶液形式要么在超临界 CO 下浸渍到支架中。所得功能性支架在数天内表现出规则的药物释放曲线,而不会失去纤维结构。本研究提出了一种简单的方法,使用水作为唯一溶剂来形成稳定的含有 HPβCD 的 HA 基纳米纤维支架,从而能够开发安全的功能性伤口敷料。