Suppr超能文献

相似文献

1
2
Plant nanobionics: Fortifying food security via engineered plant productivity.
Environ Res. 2023 Jul 15;229:115934. doi: 10.1016/j.envres.2023.115934. Epub 2023 Apr 18.
3
Photosynthesis and crop productivity are enhanced by glucose-functionalised carbon dots.
New Phytol. 2021 Jan;229(2):783-790. doi: 10.1111/nph.16886. Epub 2020 Oct 12.
4
Genetic manipulation of photosynthesis to enhance crop productivity under changing environmental conditions.
Photosynth Res. 2023 Jan;155(1):1-21. doi: 10.1007/s11120-022-00977-w. Epub 2022 Nov 1.
7
Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution.
Annu Rev Plant Biol. 2022 May 20;73:523-551. doi: 10.1146/annurev-arplant-070121-015752.
9
Redesigning photosynthesis to sustainably meet global food and bioenergy demand.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36. doi: 10.1073/pnas.1424031112. Epub 2015 Jun 29.
10
Enhancement of Plant Productivity in the Post-Genomics Era.
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.

引用本文的文献

1
Carbon Dots as an Emergent Class of Sustainable Antifungal Agents.
ACS Nano. 2025 Jul 15;19(27):24377-24403. doi: 10.1021/acsnano.5c03934. Epub 2025 Jul 2.
2
Advancing agriculture with functional NM: "pathways to sustainable and smart farming technologies".
Discov Nano. 2024 Dec 5;19(1):197. doi: 10.1186/s11671-024-04144-z.
4
Enhanced photosynthetic efficiency by nitrogen-doped carbon dots via plastoquinone-involved electron transfer in apple.
Hortic Res. 2024 Jan 12;11(3):uhae016. doi: 10.1093/hr/uhae016. eCollection 2024 Mar.
5
Uptake and bioaccumulation of iron oxide nanoparticles (FeO) in barley (Hordeum vulgare L.): effect of particle-size.
Environ Sci Pollut Res Int. 2024 Mar;31(14):22171-22186. doi: 10.1007/s11356-024-32378-y. Epub 2024 Feb 26.
6
Multicolor Photoluminescent Carbon Dots à La Carte for Biomedical Applications.
ACS Appl Mater Interfaces. 2023 Sep 27;15(38):44711-44721. doi: 10.1021/acsami.3c08200. Epub 2023 Sep 16.
8
Multilevel approach to plant-nanomaterial relationships: from cells to living ecosystems.
J Exp Bot. 2023 Jun 27;74(12):3406-3424. doi: 10.1093/jxb/erad107.
9
Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes.
Chem Soc Rev. 2022 Dec 12;51(24):9960-9985. doi: 10.1039/d2cs00741j.
10
A Chloroplast-Localised Fluorescent Protein Enhances the Photosynthetic Action Spectrum in Green Algae.
Microorganisms. 2022 Sep 1;10(9):1770. doi: 10.3390/microorganisms10091770.

本文引用的文献

2
High-bright fluorescent carbon dots and their application in selective nucleoli staining.
J Mater Chem B. 2014 Aug 21;2(31):5077-5082. doi: 10.1039/c4tb00579a. Epub 2014 Jul 2.
3
Surface functionalisation significantly changes the physical and electronic properties of carbon nano-dots.
Nanoscale. 2018 Aug 7;10(29):13908-13912. doi: 10.1039/c8nr03430c. Epub 2018 Jul 12.
4
One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth.
Nanoscale. 2018 Jul 9;10(26):12734-12742. doi: 10.1039/c8nr01644e.
6
Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). doi: 10.1098/rstb.2016.0384.
7
Photosynthesis solutions to enhance productivity.
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). doi: 10.1098/rstb.2016.0374.
8
Overexpression of the RieskeFeS Protein Increases Electron Transport Rates and Biomass Yield.
Plant Physiol. 2017 Sep;175(1):134-145. doi: 10.1104/pp.17.00622. Epub 2017 Jul 28.
9
Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications.
Beilstein J Org Chem. 2017 Apr 10;13:675-693. doi: 10.3762/bjoc.13.67. eCollection 2017.
10
Spectroscopic Insights into Carbon Dot Systems.
J Phys Chem Lett. 2017 May 18;8(10):2236-2242. doi: 10.1021/acs.jpclett.7b00794. Epub 2017 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验