Simkin Andrew J, McAusland Lorna, Lawson Tracy, Raines Christine A
School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.
School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
Plant Physiol. 2017 Sep;175(1):134-145. doi: 10.1104/pp.17.00622. Epub 2017 Jul 28.
In this study, we generated transgenic Arabidopsis () plants overexpressing the Rieske FeS protein (PetC), a component of the cytochrome (cyt ) complex. Increasing the levels of this protein resulted in concomitant increases in the levels of cyt (PetA) and cyt (PetB), core proteins of the cyt complex. Interestingly, an increase in the levels of proteins in both the photosystem I (PSI) and PSII complexes also was seen in the Rieske FeS overexpression plants. Although the mechanisms leading to these changes remain to be identified, the transgenic plants presented here provide novel tools to explore this. Importantly, overexpression of the Rieske FeS protein resulted in substantial and significant impacts on the quantum efficiency of PSI and PSII, electron transport, biomass, and seed yield in Arabidopsis plants. These results demonstrate the potential for manipulating electron transport processes to increase crop productivity.
在本研究中,我们构建了过表达细胞色素b6f复合体组分 Rieske FeS 蛋白(PetC)的转基因拟南芥植株。该蛋白水平的增加导致细胞色素b6f复合体的核心蛋白细胞色素f(PetA)和细胞色素b6(PetB)水平随之升高。有趣的是,在 Rieske FeS 过表达植株中,光系统 I(PSI)和光系统 II(PSII)复合体中的蛋白水平也有所增加。尽管导致这些变化的机制尚待确定,但本文展示的转基因植物为探索这一问题提供了新工具。重要的是,Rieske FeS 蛋白的过表达对拟南芥植株的 PSI 和 PSII 的量子效率、电子传递、生物量和种子产量产生了重大且显著的影响。这些结果证明了通过操纵电子传递过程来提高作物生产力的潜力。