Suppr超能文献

成骨纳米纤维涂层钛植入物可增强骨整合:兔模型的初步研究

Osteogenic Nanofibrous Coated Titanium Implant Results in Enhanced Osseointegration: Preliminary Study in a Rabbit Model.

作者信息

Das Siddhartha, Gurav Sandeep, Soni Vivek, Ingle Arvind, Mohanty Bhabani S, Chaudhari Pradip, Bendale Kiran, Dholam Kanchan, Bellare Jayesh R

机构信息

1Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076 India.

2Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India.

出版信息

Tissue Eng Regen Med. 2018 Jan 19;15(2):231-247. doi: 10.1007/s13770-017-0106-6. eCollection 2018 Apr.

Abstract

A titanium implant surface when coated with biodegradable, highly porous, osteogenic nanofibrous coating has shown enhanced intrinsic osteoinductive and osteoconductive properties. This coating mimics extracellular matrix resulting in differentiation of stem cells present in the peri-implant niche to osteoblast and hence results in enhanced osseointegration of the implant. The osteogenic nanofibrous coating (ONFC) consists of poly-caprolactone, gelatin, nano-sized hydroxyapatite, dexamethasone, ascorbic acid and beta-glycerophosphate. ONFC exhibits optimum mechanical properties to support mesenchymal stem cells and steer their osteogenic differentiation. ONFC was subjected to various characterization tests like scanning electron microscopy, Fourier-transform infrared spectroscopy, x-ray diffractometry, thermal degradation, biomineralization, mechanical properties, wettability and proliferation assay. In pre-clinical animal trials, the coated implant showed enhanced new bone formation when placed in the tibia of rabbit. This novel approach toward implant bone integration holds significant promise for its easy and economical coating thus marking the beginning of new era of electrospun osteogenic nanofibrous coated bone implants.

摘要

当钛植入物表面涂覆有可生物降解、高度多孔的成骨纳米纤维涂层时,已显示出增强的内在骨诱导和骨传导特性。这种涂层模仿细胞外基质,导致植入物周围微环境中存在的干细胞分化为成骨细胞,从而增强植入物的骨整合。成骨纳米纤维涂层(ONFC)由聚己内酯、明胶、纳米级羟基磷灰石、地塞米松、抗坏血酸和β-甘油磷酸组成。ONFC具有最佳的机械性能,以支持间充质干细胞并引导其成骨分化。ONFC进行了各种表征测试,如扫描电子显微镜、傅里叶变换红外光谱、X射线衍射、热降解、生物矿化、机械性能、润湿性和增殖测定。在临床前动物试验中,当将涂覆的植入物置于兔子胫骨中时,显示出新骨形成增强。这种植入物骨整合的新方法因其简便且经济的涂层而具有重大前景,从而标志着电纺成骨纳米纤维涂层骨植入物新时代的开始。

相似文献

1
Osteogenic Nanofibrous Coated Titanium Implant Results in Enhanced Osseointegration: Preliminary Study in a Rabbit Model.
Tissue Eng Regen Med. 2018 Jan 19;15(2):231-247. doi: 10.1007/s13770-017-0106-6. eCollection 2018 Apr.
2
Accentuated osseointegration in osteogenic nanofibrous coated titanium implants.
Sci Rep. 2019 Dec 9;9(1):17638. doi: 10.1038/s41598-019-53884-x.
4
Micro-nano porous structured tantalum-coated dental implants promote osteogenic activity in vitro and enhance osseointegration in vivo.
J Biomed Mater Res A. 2023 Sep;111(9):1358-1371. doi: 10.1002/jbm.a.37538. Epub 2023 Apr 3.
5
Multidynamic Osteogenic Differentiation by Effective Polydopamine Micro-Arc Oxide Manipulations.
Int J Nanomedicine. 2022 Oct 11;17:4773-4790. doi: 10.2147/IJN.S378387. eCollection 2022.
10
In vivo characterization of titanium implants coated with synthetic hydroxyapatite by electrophoresis.
Braz Dent J. 2005;16(1):75-81. doi: 10.1590/s0103-64402005000100013. Epub 2005 Aug 17.

引用本文的文献

1
Sustained release of Sr and Ca from a micronanotopographic titanium surface improves osteoblast function.
Biometals. 2025 Apr;38(2):623-646. doi: 10.1007/s10534-025-00668-8. Epub 2025 Mar 17.
2
The Effects of Statins on Bone Formation Around Implants Placed in Animal Bones: A Systematic Review and Meta-Analysis.
J Maxillofac Oral Surg. 2023 Jun;22(2):265-286. doi: 10.1007/s12663-023-01873-z. Epub 2023 Feb 27.
3
X-ray computed microtomography datasets for osteogenic nanofibrous coated titanium implants.
Sci Data. 2022 Jun 18;9(1):348. doi: 10.1038/s41597-022-01400-8.
4
Enhancing Osseointegration of TC4 Alloy by Surficial Activation Through Biomineralization Method.
Front Bioeng Biotechnol. 2021 Feb 23;9:639835. doi: 10.3389/fbioe.2021.639835. eCollection 2021.
5
Fluorine-incorporated TiO nanotopography enhances adhesion and differentiation through ERK/CREB pathway.
J Biomed Mater Res A. 2021 Aug;109(8):1406-1417. doi: 10.1002/jbm.a.37132. Epub 2020 Dec 16.
6
Current Insight of Collagen Biomatrix for Gingival Recession: An Evidence-Based Systematic Review.
Polymers (Basel). 2020 Sep 13;12(9):2081. doi: 10.3390/polym12092081.
7
Accentuated osseointegration in osteogenic nanofibrous coated titanium implants.
Sci Rep. 2019 Dec 9;9(1):17638. doi: 10.1038/s41598-019-53884-x.
8
Near-Infrared Contrast Agents for Bone-Targeted Imaging.
Tissue Eng Regen Med. 2019 Aug 19;16(5):443-450. doi: 10.1007/s13770-019-00208-9. eCollection 2019 Oct.

本文引用的文献

3
Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses.
J Biomater Sci Polym Ed. 2016 Jun;27(9):824-38. doi: 10.1080/09205063.2016.1160560. Epub 2016 Apr 4.
4
Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering.
J Biomed Mater Res A. 2016 Apr;104(4):1017-29. doi: 10.1002/jbm.a.35614. Epub 2016 Feb 1.
5
Surface Modifications and Their Effects on Titanium Dental Implants.
Biomed Res Int. 2015;2015:791725. doi: 10.1155/2015/791725. Epub 2015 Sep 7.
6
Bone tissue regeneration: the role of scaffold geometry.
Biomater Sci. 2015 Feb;3(2):231-45. doi: 10.1039/c4bm00291a. Epub 2014 Oct 30.
7
Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:71-9. doi: 10.1016/j.msec.2014.10.020. Epub 2014 Oct 13.
9
Biomimetic electrospun nanofibrous structures for tissue engineering.
Mater Today (Kidlington). 2013 Jun 1;16(6):229-241. doi: 10.1016/j.mattod.2013.06.005.
10
A review on the wettability of dental implant surfaces II: Biological and clinical aspects.
Acta Biomater. 2014 Jul;10(7):2907-18. doi: 10.1016/j.actbio.2014.03.032. Epub 2014 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验