Suppr超能文献

在三维大孔聚二甲基硅氧烷支架内培养黑素细胞和成纤维细胞:迈向皮肤敷料材料

Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material.

作者信息

Varshney Neelima, Sahi Ajay Kumar, Vajanthri Kiran Yellappa, Poddar Suruchi, Balavigneswaran Chelladurai Karthikeyan, Prabhakar Arumugam, Rao Vivek, Mahto Sanjeev Kumar

机构信息

Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.

Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, 2 Rafi Marg, New Delhi, 110001, India.

出版信息

Cytotechnology. 2019 Feb;71(1):287-303. doi: 10.1007/s10616-018-0285-6. Epub 2019 Jan 2.

Abstract

In the present study, we propose a platform for topical wound dressing material using a polydimethylsiloxane (PDMS) scaffold in order to enhance the skin healing process. In vitro co-culture assessment of epidermal-origin mouse B16-F10 melanocyte cells and mouse L929 fibroblast cells in three-dimensional polymeric scaffolds has been carried out towards developing bio-stable, interconnected, highly macroporous, PDMS based tissue-engineered scaffolds, using the salt leaching method. To determine a suitable ratio of salt to PDMS pre-polymer in the scaffold, two different samples with ratios 2:1 and 3:1 [w/w], were fabricated. Effective pore sizes of both scaffolds were observed to lie in the desirable range of 152-165 μm. In addition, scaffolds were pre-coated with collagen and investigated as a podium for culturing the chosen cells (fibroblast and melanocyte cells). Experimental results demonstrate not only a high proliferative potential of the skin tissue-specific cells within the fabricated PDMS based scaffolds but also confirm the presence of several other essential attributes such as high interconnectivity, optimum porosity, excellent mechanical strength, gaseous permeability, promising cell compatibility, water absorption capability and desired surface wettability. Therefore, scaffolds facilitate a high degree of cellular adhesion while providing a microenvironment necessary for optimal cellular infiltration and viability. Thus, the outcomes suggest that PDMS based macroporous scaffold can be used as a potential candidate for skin dressing material. In addition, the fabricated PDMS scaffolds may also be exploited for a plethora of other applications in tissue engineering and drug delivery.

摘要

在本研究中,我们提出了一种使用聚二甲基硅氧烷(PDMS)支架的局部伤口敷料材料平台,以促进皮肤愈合过程。为了开发生物稳定、相互连接、高度大孔的基于PDMS的组织工程支架,采用盐析法对表皮来源的小鼠B16-F10黑色素细胞和小鼠L929成纤维细胞在三维聚合物支架中进行了体外共培养评估。为了确定支架中盐与PDMS预聚物的合适比例,制备了比例为2:1和3:1 [w/w]的两种不同样品。观察到两种支架的有效孔径均在152-165μm的理想范围内。此外,支架预先用胶原蛋白包被,并作为培养所选细胞(成纤维细胞和黑色素细胞)的平台进行研究。实验结果不仅证明了在制备的基于PDMS的支架内皮肤组织特异性细胞具有高增殖潜力,还证实了存在其他几个重要特性,如高互连性、最佳孔隙率、优异的机械强度、气体渗透性、良好的细胞相容性、吸水能力和所需的表面润湿性。因此,支架有助于高度的细胞粘附,同时提供最佳细胞浸润和活力所需的微环境。因此,结果表明基于PDMS的大孔支架可作为皮肤敷料材料的潜在候选者。此外,制备的PDMS支架还可用于组织工程和药物递送中的大量其他应用。

相似文献

1
Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material.
Cytotechnology. 2019 Feb;71(1):287-303. doi: 10.1007/s10616-018-0285-6. Epub 2019 Jan 2.
3
Morphology-induced physico-mechanical and biological characteristics of TPU-PDMS blend scaffolds for skin tissue engineering applications.
J Biomed Mater Res B Appl Biomater. 2019 Jul;107(5):1634-1644. doi: 10.1002/jbm.b.34256. Epub 2018 Oct 17.
4
Polyurethane/chitosan/hyaluronic acid scaffolds: providing an optimum environment for fibroblast growth.
J Wound Care. 2020 Oct 2;29(10):586-596. doi: 10.12968/jowc.2020.29.10.586.
5
Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications.
J Biomater Sci Polym Ed. 2013;24(9):1041-56. doi: 10.1080/09205063.2012.735097. Epub 2012 Oct 31.
6
Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities.
Sci Technol Adv Mater. 2017 Dec 1;18(1):987-996. doi: 10.1080/14686996.2017.1406287. eCollection 2017.
8
Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.
Tissue Eng. 2002 Feb;8(1):43-52. doi: 10.1089/107632702753503045.

引用本文的文献

2
In vitro formation and extended culture of highly metabolically active and contractile tissues.
PLoS One. 2023 Nov 1;18(11):e0293609. doi: 10.1371/journal.pone.0293609. eCollection 2023.
3
Silk-Based Biomaterials for Designing Bioinspired Microarchitecture for Various Biomedical Applications.
Biomimetics (Basel). 2023 Jan 28;8(1):55. doi: 10.3390/biomimetics8010055.
4
In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings.
Pharmaceutics. 2022 Dec 22;15(1):42. doi: 10.3390/pharmaceutics15010042.
5
Milestones and current achievements in development of multifunctional bioscaffolds for medical application.
Bioact Mater. 2021 Jan 28;6(8):2412-2438. doi: 10.1016/j.bioactmat.2021.01.007. eCollection 2021 Aug.
6
Molecular-Level Interactions between Engineered Materials and Cells.
Int J Mol Sci. 2019 Aug 25;20(17):4142. doi: 10.3390/ijms20174142.

本文引用的文献

2
Synthetic polymeric biomaterials for wound healing: a review.
Prog Biomater. 2018 Mar;7(1):1-21. doi: 10.1007/s40204-018-0083-4. Epub 2018 Feb 14.
3
Development of a porous 3D graphene-PDMS scaffold for improved osseointegration.
Colloids Surf B Biointerfaces. 2017 Nov 1;159:386-393. doi: 10.1016/j.colsurfb.2017.07.087. Epub 2017 Aug 1.
4
Advances in Skin Regeneration Using Tissue Engineering.
Int J Mol Sci. 2017 Apr 7;18(4):789. doi: 10.3390/ijms18040789.
5
Materials for Microfluidic Immunoassays: A Review.
Adv Healthc Mater. 2017 Aug;6(15). doi: 10.1002/adhm.201601403. Epub 2017 Mar 21.
6
A scaffold-free surface culture of B16F10 murine melanoma cells based on magnetic levitation.
Cytotechnology. 2016 Dec;68(6):2323-2334. doi: 10.1007/s10616-016-0026-7. Epub 2016 Sep 26.
8
Methodologies in creating skin substitutes.
Cell Mol Life Sci. 2016 Sep;73(18):3453-72. doi: 10.1007/s00018-016-2252-8. Epub 2016 May 6.
9
Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects.
Cytotechnology. 2016 May;68(3):355-69. doi: 10.1007/s10616-015-9895-4. Epub 2015 Jun 20.
10
Microfluidic Chip for Site-Specific Neuropharmacological Treatment and Activity Probing of 3D Neuronal "Optonet" Cultures.
Adv Healthc Mater. 2015 Jul 15;4(10):1478-83, 1422. doi: 10.1002/adhm.201400643. Epub 2015 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验