Suppr超能文献

精神分裂症的静息状态去同步网络。

Resting-state anticorrelated networks in Schizophrenia.

机构信息

Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.

Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.

出版信息

Psychiatry Res Neuroimaging. 2019 Feb 28;284:1-8. doi: 10.1016/j.pscychresns.2018.12.013. Epub 2018 Dec 25.

Abstract

Converging evidences from different lines of research suggest abnormalities in functional brain connectivity in schizophrenia. While positively correlated brain networks have been well researched, anticorrelated functional connectivity remains under explored. Hence, in this study we examined (1) the resting-state anticorrelated networks in schizophrenia, and (2) the accuracy of support vector machines (SVMs) in differentiating healthy individuals from schizophrenia patients using these anticorrelated networks. The sample consisted of 56 patients with DSM-IV schizophrenia and 56 healthy controls. We computed functional connectivity matrices and used Anticorrelation after Mean of Antilog method (AMA) to select predominantly anticorrelated networks. The basal ganglia, thalamus, lingual gyrus, and cerebellar vermis showed significantly different, Type A (decreased anticorrelation) connections. The medial temporal lobe and posterior cingulate gyri showed significantly different, Type B (increased anticorrelation) connections. Use of SVM on AMA networks showed moderate accuracy in differentiating schizophrenia and healthy controls. Our results suggest that anticorrelated networks between the sub-cortical and cortical areas are abnormal in schizophrenia and this has potential to be a differential biomarker. These preliminary findings, if replicated in future studies with larger number of patients, and advanced machine learning techniques could have potential clinical applications.

摘要

来自不同研究方向的汇聚证据表明精神分裂症患者的大脑功能连接存在异常。虽然正相关的大脑网络已经得到了充分的研究,但负相关的功能连接仍然有待探索。因此,在这项研究中,我们检验了(1)精神分裂症患者的静息状态负相关网络,以及(2)使用这些负相关网络的支持向量机(SVM)区分健康个体和精神分裂症患者的准确性。样本包括 56 名 DSM-IV 精神分裂症患者和 56 名健康对照者。我们计算了功能连接矩阵,并使用平均对数反演后去均值(Anticorrelation after Mean of Antilog,AMA)方法选择主要的负相关网络。基底节、丘脑、舌回和小脑蚓部显示出明显不同的 A 型(负相关减少)连接。内侧颞叶和后扣带回显示出明显不同的 B 型(负相关增加)连接。使用 SVM 对 AMA 网络进行分析,对精神分裂症和健康对照组的区分具有中等准确性。我们的结果表明,精神分裂症患者的皮质下和皮质区域之间的负相关网络存在异常,这具有成为差异生物标志物的潜力。如果在未来的研究中,这些初步发现能够得到更多患者和更先进的机器学习技术的验证,那么它们可能具有潜在的临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验