Suppr超能文献

Delta 放射组学改善肺癌筛查中肺结节恶性预测

Delta Radiomics Improves Pulmonary Nodule Malignancy Prediction in Lung Cancer Screening.

作者信息

Alahmari Saeed S, Cherezov Dmitry, Goldgof Dmitry, Hall Lawrence, Gillies Robert J, Schabath Matthew B

机构信息

Department of Computer Sciences and Engineering, University of South Florida, Tampa, Florida.

Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.

出版信息

IEEE Access. 2018;6:77796-77806. doi: 10.1109/ACCESS.2018.2884126. Epub 2018 Nov 29.

Abstract

Low-dose computed tomography (LDCT) plays a critical role in the early detection of lung cancer. Despite the life-saving benefit of early detection by LDCT, there are many limitations of this imaging modality including high rates of detection of indeterminate pulmonary nodules. Radiomics is the process of extracting and analyzing image-based, quantitative features from a region-of-interest which then can be analyzed to develop decision support tools that can improve lung cancer screening. Although prior published research has shown that delta radiomics (i.e., changes in features over time) have utility in predicting treatment response, limited work has been conducted using delta radiomics in lung cancer screening. As such, we conducted analyses to assess the performance of incorporating delta with conventional (non delta) features using machine learning to predict lung nodule malignancy. We found the best improved area under the receiver operating characteristic curve (AUC) was 0.822 when delta features were combined with conventional features versus an AUC 0.773 for conventional features only. Overall, this study demonstrated the important utility of combining delta radiomics features with conventional radiomics features to improve performance of models in the lung cancer screening setting.

摘要

低剂量计算机断层扫描(LDCT)在肺癌的早期检测中起着关键作用。尽管LDCT早期检测具有挽救生命的益处,但这种成像方式存在许多局限性,包括不确定肺结节的高检出率。放射组学是从感兴趣区域提取和分析基于图像的定量特征的过程,然后可以对这些特征进行分析以开发决策支持工具,从而改善肺癌筛查。尽管先前发表的研究表明,差异放射组学(即特征随时间的变化)在预测治疗反应方面具有实用性,但在肺癌筛查中使用差异放射组学的研究较少。因此,我们进行了分析,以评估使用机器学习将差异特征与传统(非差异)特征相结合来预测肺结节恶性肿瘤的性能。我们发现,当差异特征与传统特征相结合时,受试者操作特征曲线(AUC)下的最佳改进面积为0.822,而仅使用传统特征时的AUC为0.773。总体而言,本研究证明了将差异放射组学特征与传统放射组学特征相结合在改善肺癌筛查模型性能方面的重要实用性。

相似文献

1
Delta Radiomics Improves Pulmonary Nodule Malignancy Prediction in Lung Cancer Screening.
IEEE Access. 2018;6:77796-77806. doi: 10.1109/ACCESS.2018.2884126. Epub 2018 Nov 29.
3
Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches.
Thorax. 2024 Mar 15;79(4):307-315. doi: 10.1136/thorax-2023-220226.
4
Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram.
Cancer Commun (Lond). 2020 Jan;40(1):16-24. doi: 10.1002/cac2.12002. Epub 2020 Mar 3.
5
External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis.
Med Phys. 2020 Sep;47(9):4125-4136. doi: 10.1002/mp.14308. Epub 2020 Jun 23.
9
Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules Using Computed Tomography Radiomics Parameters.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221119748. doi: 10.1177/15330338221119748.
10
Predicting Nodule Malignancy using a CNN Ensemble Approach.
Proc Int Jt Conf Neural Netw. 2018 Jul;2018. doi: 10.1109/IJCNN.2018.8489345. Epub 2018 Oct 15.

引用本文的文献

6
A 3D lung lesion variational autoencoder.
Cell Rep Methods. 2024 Feb 26;4(2):100695. doi: 10.1016/j.crmeth.2024.100695. Epub 2024 Jan 25.

本文引用的文献

1
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
2
5
Predicting Malignant Nodules from Screening CT Scans.
J Thorac Oncol. 2016 Dec;11(12):2120-2128. doi: 10.1016/j.jtho.2016.07.002. Epub 2016 Jul 13.
6
CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess response to chemotherapy?
United European Gastroenterol J. 2016 Apr;4(2):257-63. doi: 10.1177/2050640615601603. Epub 2015 Aug 21.
7
Radiomics: Images Are More than Pictures, They Are Data.
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.
9
Test-retest reproducibility analysis of lung CT image features.
J Digit Imaging. 2014 Dec;27(6):805-23. doi: 10.1007/s10278-014-9716-x.
10
Reproducibility and Prognosis of Quantitative Features Extracted from CT Images.
Transl Oncol. 2014 Feb 1;7(1):72-87. doi: 10.1593/tlo.13844. eCollection 2014 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验