Suppr超能文献

利用加权基因共表达网络分析、Cox回归和L1-LASSO惩罚对胶质母细胞瘤中的长链非编码RNA进行预后预测分析。

Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, Cox regression, and L1-LASSO penalization.

作者信息

Liang Ruqing, Zhi Yaqin, Zheng Guizhi, Zhang Bin, Zhu Hua, Wang Meng

机构信息

Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province 272000, China.

Department of Oncology, Jining No 1 People's Hospital, Jining, Shandong Province 272000, China,

出版信息

Onco Targets Ther. 2018 Dec 21;12:157-168. doi: 10.2147/OTT.S171957. eCollection 2019.

Abstract

PURPOSE

This study focused on identification of long non-coding RNAs (lncRNAs) for prognosis prediction of glioblastoma (GBM) through weighted gene co-expression network analysis (WGCNA) and L1-penalized least absolute shrinkage and selection operator (LASSO) Cox proportional hazards (PH) model.

MATERIALS AND METHODS

WGCNA was performed based on RNA expression profiles of GBM from Chinese Glioma Genome Atlas (CGGA), National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), and the European Bioinformatics Institute ArrayExpress for the identification of GBM-related modules. Subsequently, prognostic lncRNAs were determined using LASSO Cox PH model, followed by constructing a risk scoring model based on these lncRNAs. The risk score was used to divide patients into high- and low-risk groups. Difference in survival between groups was analyzed using Kaplan-Meier survival analysis. IncRNA-mRNA networks were built for the prognostic lncRNAs, followed by pathway enrichment analysis for these networks.

RESULTS

This study identified eight preserved GBM-related modules, including 188 lncRNAs. Consequently, C20orf166-AS1, LINC00645, LBX2-AS1, LINC00565, LINC00641, and PRRT3-AS1 were identified by LASSO Cox PH model. A risk scoring model based on the lncRNAs was constructed that could divide patients into different risk groups with significantly different survival rates. Prognostic value of this six-lncRNA signature was validated in two independent sets. C20orf166-AS1 was associated with antigen processing and presentation and cell adhesion molecule pathways, involving nine common genes. LBX2-AS1, LINC00641, PRRT3-AS1, and LINC00565 were related to focal adhesion, extracellular matrix receptor interaction, and mitogen-activated protein kinase signaling pathways, which shared 12 common genes.

CONCLUSION

This prognostic six-lncRNA signature may improve prognosis prediction of GBM. This study reveals many pathways and genes involved in the mechanisms behind these lncRNAs.

摘要

目的

本研究旨在通过加权基因共表达网络分析(WGCNA)和L1惩罚最小绝对收缩和选择算子(LASSO)Cox比例风险(PH)模型,鉴定用于预测胶质母细胞瘤(GBM)预后的长链非编码RNA(lncRNA)。

材料与方法

基于来自中国胶质瘤基因组图谱(CGGA)、美国国立生物技术信息中心(NCBI)基因表达综合数据库(GEO)以及欧洲生物信息学研究所阵列表达数据库的GBM RNA表达谱进行WGCNA,以鉴定与GBM相关的模块。随后,使用LASSO Cox PH模型确定预后lncRNA,接着基于这些lncRNA构建风险评分模型。风险评分用于将患者分为高风险组和低风险组。采用Kaplan-Meier生存分析来分析两组之间的生存差异。为预后lncRNA构建lncRNA- mRNA网络,随后对这些网络进行通路富集分析。

结果

本研究鉴定出8个保留的与GBM相关的模块,包括188个lncRNA。因此,通过LASSO Cox PH模型鉴定出C20orf166-AS1 LINC00645、LBX2-AS1、LINC00565、LINC00641和PRRT3-AS1。构建了基于lncRNA的风险评分模型,该模型可将患者分为不同风险组,其生存率有显著差异。这六个lncRNA特征的预后价值在两个独立数据集中得到验证。C20orf166-AS1与抗原加工和呈递以及细胞粘附分子通路相关,涉及9个共同基因。LBX2-AS1、LINC00641、PRRT3-AS1和LINC00565与粘着斑、细胞外基质受体相互作用以及丝裂原活化蛋白激酶信号通路相关,这些通路共有12个共同基因。

结论

这种预后性的六个lncRNA特征可能会改善GBM的预后预测。本研究揭示了许多lncRNA背后机制所涉及的通路和基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e13/6306053/bd9ad6f135aa/ott-12-157Fig5.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验