Department of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom.
Ingenza Ltd., Roslin Innovation Centre, Roslin, United Kingdom.
PLoS One. 2019 Jan 7;14(1):e0210121. doi: 10.1371/journal.pone.0210121. eCollection 2019.
CRISPR-Cas systems have become widely used across all fields of biology as a genome engineering tool. With its recent demonstration in the Gram positive industrial workhorse Bacillus subtilis, this tool has become an attractive option for rapid, markerless strain engineering of industrial production hosts. Previously described strategies for CRISPR-Cas9 genome editing in B. subtilis have involved chromosomal integrations of Cas9 and single guide RNA expression cassettes, or construction of large plasmids for simultaneous transformation of both single guide RNA and donor DNA. Here we use a flexible, co-transformation approach where the single guide RNA is inserted in a plasmid for Cas9 co-expression, and the donor DNA is supplied as a linear PCR product observing an editing efficiency of 76%. This allowed multiple, rapid rounds of in situ editing of the subtilisin E gene to incorporate a salt bridge triad present in the Bacillus clausii thermotolerant homolog, M-protease. A novel subtilisin E variant was obtained with increased thermotolerance and activity.
CRISPR-Cas 系统已成为生物学各个领域中广泛使用的基因组工程工具。最近在革兰氏阳性工业主力枯草芽孢杆菌中的应用证明,该工具成为了快速、无标记菌株工程的有吸引力的选择,用于工业生产宿主。以前在枯草芽孢杆菌中进行 CRISPR-Cas9 基因组编辑的策略涉及 Cas9 和单指导 RNA 表达盒的染色体整合,或构建大型质粒以同时转化单指导 RNA 和供体 DNA。在这里,我们使用一种灵活的共转化方法,其中单指导 RNA 插入质粒中以共表达 Cas9,供体 DNA 作为线性 PCR 产物提供,观察到 76%的编辑效率。这允许对枯草杆菌蛋白酶基因进行多次快速原位编辑,以引入存在于耐热同源物巴氏芽孢杆菌中的盐桥三联体。获得了一种新型枯草杆菌蛋白酶变体,其耐热性和活性得到提高。