Chabhadiya Sameer, Acharya D K, Mangrola Amitsinh, Shah Rupal, Pithawala Edwin A
Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India.
Department of Microbiology, Gandhinagar University, Kalol, Gujarat, India.
Biotechnol Notes. 2024 Jul 25;5:111-119. doi: 10.1016/j.biotno.2024.07.001. eCollection 2024.
Biosurfactants, synthesized by microorganisms, hold potential for various industrial and environmental applications due to their surface-active properties and biodegradability. Metabolic and genetic engineering strategies enhance biosurfactant production by modifying microbial pathways and genetics. Strategies include optimizing biosurfactant biosynthesis pathways, expanding substrate utilization, and improving stress responses. Genetic engineering allows customization of biosurfactant characteristics to meet industrial needs. Notable examples include engineering for enhanced rhamnolipid production and creating synthetic biosurfactant pathways in non-native hosts like . CRISPR-Cas9 technology offers precise tools for genetic manipulation, enabling targeted gene disruption and promoter optimization to enhance biosurfactant production efficiency. Synthetic promoters enable precise control over biosurfactant gene expression, contributing to pathway optimization across diverse microbial hosts. The future of biosurfactant research includes sustainable bio-processing, customized biosurfactant engineering, and integration of artificial intelligence and systems biology. Advances in genetic and metabolic engineering will enable tailor-made biosurfactants for diverse applications, with potential for industrial-scale production and commercialization. Exploration of untapped microbial diversity may lead to novel biosurfactants with unique properties, expanding the versatility and sustainability of biosurfactant-based solutions.
由微生物合成的生物表面活性剂,由于其表面活性特性和生物可降解性,在各种工业和环境应用中具有潜力。代谢和基因工程策略通过改变微生物途径和基因来提高生物表面活性剂的产量。这些策略包括优化生物表面活性剂生物合成途径、扩大底物利用范围以及改善应激反应。基因工程允许定制生物表面活性剂的特性以满足工业需求。显著的例子包括工程改造以提高鼠李糖脂产量以及在非天然宿主(如……)中创建合成生物表面活性剂途径。CRISPR-Cas9技术为基因操作提供了精确工具,能够进行靶向基因破坏和启动子优化以提高生物表面活性剂的生产效率。合成启动子能够精确控制生物表面活性剂基因的表达,有助于在不同微生物宿主中优化途径。生物表面活性剂研究的未来包括可持续生物加工、定制生物表面活性剂工程以及人工智能和系统生物学的整合。基因和代谢工程的进展将使定制的生物表面活性剂用于各种应用成为可能,具有工业规模生产和商业化的潜力。探索未开发的微生物多样性可能会产生具有独特特性的新型生物表面活性剂,扩大基于生物表面活性剂的解决方案的多功能性和可持续性。