Chmielewski Adrian, Meng Jun, Zhu Beien, Gao Yi, Guesmi Hazar, Prunier Hélène, Alloyeau Damien, Wang Guillaume, Louis Catherine, Delannoy Laurent, Afanasiev Pavel, Ricolleau Christian, Nelayah Jaysen
Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France.
Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China.
ACS Nano. 2019 Feb 26;13(2):2024-2033. doi: 10.1021/acsnano.8b08530. Epub 2019 Jan 11.
Despite intensive research efforts, the nature of the active sites for O and H adsorption/dissociation by supported gold nanoparticles (NPs) is still an unresolved issue in heterogeneous catalysis. This stems from the absence of a clear picture of the structural evolution of Au NPs at near reaction conditions, i. e., at high pressures and high temperatures. We hereby report real-space observations of the equilibrium shapes of titania-supported Au NPs under O and H at atmospheric pressure using gas transmission electron microscopy. In situ TEM observations show instantaneous changes in the equilibrium shape of Au NPs during cooling under O from 400 °C to room temperature. In comparison, no instant change in equilibrium shape is observed under a H environment. To interpret these experimental observations, the equilibrium shape of Au NPs under O, atomic oxygen, and H is predicted using a multiscale structure reconstruction model. Excellent agreement between TEM observations and theoretical modeling of Au NPs under O provides strong evidence for the molecular adsorption of oxygen on the Au NPs below 120 °C on specific Au facets, which are identified in this work. In the case of H, theoretical modeling predicts no interaction with gold atoms that explain their high morphological stability under this gas. This work provides atomic structural information for the fundamental understanding of the O and H adsorption properties of Au NPs under real working conditions and shows a way to identify the active sites of heterogeneous nanocatalysts under reaction conditions by monitoring the structure reconstruction.
尽管进行了深入的研究,但负载型金纳米颗粒(NPs)用于氧和氢吸附/解离的活性位点的性质在多相催化中仍是一个未解决的问题。这源于在接近反应条件下,即在高压和高温下,金纳米颗粒结构演变的清晰图像缺失。我们在此报告了使用气体透射电子显微镜在大气压下对二氧化钛负载的金纳米颗粒在氧气和氢气环境中的平衡形状进行的实空间观察。原位透射电子显微镜观察表明,在氧气环境中从400°C冷却至室温期间,金纳米颗粒的平衡形状会瞬间发生变化。相比之下,在氢气环境中未观察到平衡形状的瞬间变化。为了解释这些实验观察结果,我们使用多尺度结构重建模型预测了金纳米颗粒在氧气、原子氧和氢气环境下的平衡形状。氧气环境下金纳米颗粒的透射电子显微镜观察结果与理论模型之间的出色吻合,为低于120°C时氧气在特定金晶面上的金纳米颗粒上的分子吸附提供了有力证据,这些特定金晶面在本研究中得到了识别。对于氢气,理论模型预测其与金原子无相互作用,这解释了金纳米颗粒在该气体环境下的高形态稳定性。这项工作提供了原子结构信息,有助于在实际工作条件下从根本上理解金纳米颗粒的氧和氢吸附特性,并展示了一种通过监测结构重建来识别反应条件下多相纳米催化剂活性位点的方法。