Suppr超能文献

在连续高频数据流中,一组最小的生理标志物可更早预测成人脓毒症的发生。

A minimal set of physiomarkers in continuous high frequency data streams predict adult sepsis onset earlier.

机构信息

University of Tennessee, Knoxville, TN, USA.

Center for Biomedical Informatics, Department of Pediatrics, University of Tennessee Health, USA Science Center, Memphis, TN, USA.

出版信息

Int J Med Inform. 2019 Feb;122:55-62. doi: 10.1016/j.ijmedinf.2018.12.002. Epub 2018 Dec 10.

Abstract

PURPOSE

Sepsis is a life-threatening condition with high mortality rates and expensive treatment costs. To improve short- and long-term outcomes, it is critical to detect at-risk sepsis patients at an early stage.

METHODS

A data-set consisting of high-frequency physiological data from 1161 critically ill patients was analyzed. 377 patients had developed sepsis, and had data at least 3 h prior to the onset of sepsis. A random forest classifier was trained to discriminate between sepsis and non-sepsis patients in real-time using a total of 132 features extracted from a moving time-window. The model was trained on 80% of the patients and was tested on the remaining 20% of the patients, for two observational periods of lengths 3 and 6 h prior to onset.

RESULTS

The model that used continuous physiological data alone resulted in sensitivity and F1 score of up to 80% and 67% one hour before sepsis onset. On average, these models were able to predict sepsis 294.19 ± 6.50 min (5 h) before the onset.

CONCLUSIONS

The use of machine learning algorithms on continuous streams of physiological data can allow for early identification of at-risk patients in real-time with high accuracy.

摘要

目的

脓毒症是一种危及生命的疾病,死亡率和治疗费用都很高。为了改善短期和长期预后,早期发现高危脓毒症患者至关重要。

方法

分析了来自 1161 名危重病患者的高频生理数据数据集。377 名患者发生了脓毒症,并且在脓毒症发作前至少有 3 小时的数据。使用从移动时间窗口中提取的总共 132 个特征,使用随机森林分类器实时区分脓毒症患者和非脓毒症患者。该模型在 80%的患者上进行训练,并在其余 20%的患者上进行测试,观察时间为脓毒症发作前 3 小时和 6 小时。

结果

仅使用连续生理数据的模型在脓毒症发作前一小时达到了 80%和 67%的最高敏感性和 F1 评分。这些模型平均能够在发病前 294.19±6.50 分钟(5 小时)预测脓毒症。

结论

使用机器学习算法对连续的生理数据流进行分析,可以实时、高精度地识别高危患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验