Suppr超能文献

圆柱矢量光束探测的 AlGaAs 纳米天线中的谐振谐波产生。

Resonant harmonic generation in AlGaAs nanoantennas probed by cylindrical vector beams.

机构信息

Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia.

出版信息

Nanoscale. 2019 Jan 23;11(4):1745-1753. doi: 10.1039/c8nr08034h.

Abstract

We investigate second- and third-harmonic generation from individual AlGaAs nanoantennas using far-field mapping with radially- and azimuthally-polarized cylindrical vector beams. Due to the unique polarization structure of these beams, we are able to determine the crystal orientation of the nanoantenna in a single scanning map. Our method thus provides a novel and versatile optical tool to study the crystal properties of semiconductor nanoantennas. We also demonstrate the influence of cylindrical vector beam excitation on the resonant enhancement of second- and third-harmonic generation driven by electric and magnetic anapole-like modes, despite falling in the strong absorption regime of AlGaAs. In particular, we observe a greater nonlinear conversion efficiency from a single nanoantenna excited with a radially-polarized beam as compared to an azimuthally polarized cylindrical vector beam. The fundamental field of the radially-polarized beam strongly couples to the multipoles increasing the near-field enhancement of the nanoantenna. Our work introduces new ways to study individual nanostructures and to tailor the efficiencies of nonlinear phenomena at the nanoscale using non-conventional optical techniques.

摘要

我们使用具有径向和角向偏振的圆柱矢量光束的远场测绘来研究单个 AlGaAs 纳米天线的二次和三次谐波产生。由于这些光束具有独特的偏振结构,我们能够在单个扫描图中确定纳米天线的晶体取向。因此,我们的方法提供了一种新颖而通用的光学工具,用于研究半导体纳米天线的晶体性质。我们还证明了尽管在 AlGaAs 的强吸收区域内,圆柱矢量光束激发对电和磁偶极子样模式驱动的二次和三次谐波产生的共振增强的影响。特别是,我们观察到与用角向偏振圆柱矢量光束激发相比,单个纳米天线在被径向偏振光束激发时具有更高的非线性转换效率。径向偏振光束的基场强烈耦合到多极子,增加了纳米天线的近场增强。我们的工作为使用非传统光学技术研究单个纳米结构和调整纳米尺度上非线性现象的效率引入了新的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验