Suppr超能文献

基于试验的经济评估的自我报告和常规收集的电子医疗资源使用数据:英格兰的现状及未来考虑。

Self-reported and routinely collected electronic healthcare resource-use data for trial-based economic evaluations: the current state of play in England and considerations for the future.

机构信息

School of Health and Related Research (ScHARR), University of Sheffield West Court, 1 Mappin Street, Sheffield, S1 4DT, UK.

School of Social and Community Medicine, University of Bristol Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK.

出版信息

BMC Med Res Methodol. 2019 Jan 9;19(1):8. doi: 10.1186/s12874-018-0649-9.

Abstract

BACKGROUND

Randomised controlled trials (RCTs) are generally regarded as the "gold standard" for providing quantifiable evidence around the effectiveness and cost-effectiveness of new healthcare technologies. In order to perform the economic evaluations associated with RCTs, there is a need for accessible and good quality resource-use data; for the purpose of discussion here, data that best reflect the care received. Traditionally, researchers have developed questionnaires for resource-use data collection. However, the evolution of routinely collected electronic data within care services provides new opportunities for collecting data without burdening patients or caregivers (e.g. clinicians). This paper describes the potential strengths and limitations of each data collection method and then discusses aspects for consideration before choosing which method to use.

MAIN TEXT

We describe electronic data sources (large observational datasets, commissioning data, and raw data extraction) that may be suitable data sources for informing clinical trials and the current status of self-reported instruments for measuring resource-use. We assess the methodological risks and benefits, and compare the two methodologies. We focus on healthcare resource-use; however, many of the considerations have relevance to clinical questions. Patient self-report forms a pragmatic and cheap method that is largely under the control of the researcher. However, there are known issues with the validity of the data collected, loss to follow-up may be high, and questionnaires suffer from missing data. Routinely collected electronic data may be more accurate and more practical if large numbers of patients are involved. However, datasets often incur a cost and researchers are bound by the time for data approval and extraction by the data holders.

CONCLUSIONS

Owing to the issues associated with electronic datasets, self-reported methods may currently be the preferred option. However, electronic hospital data are relatively more accessible, informative, standardised, and reliable. Therefore in trials where secondary care constitutes a major driver of patient care, detailed electronic data may be considered superior to self-reported methods; with the caveat of requiring data sharing agreements with third party providers and potentially time-consuming extraction periods. Self-reported methods will still be required when a 'societal' perspective (e.g. quantifying informal care) is desirable for the intended analysis.

摘要

背景

随机对照试验(RCT)通常被认为是提供新医疗技术有效性和成本效益的量化证据的“金标准”。为了进行与 RCT 相关的经济评估,需要可获取且高质量的资源使用数据;这里讨论的是最好反映所接受治疗的资源使用数据。传统上,研究人员为资源使用数据收集开发了问卷。然而,医疗服务中常规收集的电子数据的发展为收集数据提供了新的机会,而不会给患者或护理人员(例如临床医生)带来负担。本文描述了每种数据收集方法的潜在优势和局限性,然后讨论了在选择使用哪种方法之前需要考虑的方面。

主要文本

我们描述了电子数据源(大型观察性数据集、委托数据和原始数据提取),这些数据源可能适合为临床试验提供信息,并介绍了用于测量资源使用的自我报告工具的当前状况。我们评估了方法学风险和收益,并比较了两种方法。我们专注于医疗保健资源的使用;然而,许多考虑因素与临床问题相关。患者自我报告形式是一种实用且廉价的方法,在很大程度上受研究人员的控制。然而,所收集数据的有效性存在已知问题,随访丢失率可能很高,并且问卷存在数据缺失问题。如果涉及大量患者,常规收集的电子数据可能更准确且更实用。然而,数据集通常需要成本,并且研究人员受到数据持有者批准和提取数据的时间限制。

结论

由于与电子数据集相关的问题,自我报告方法目前可能是首选。然而,电子医院数据相对更易于获取、信息量更大、标准化程度更高且更可靠。因此,在次要护理是患者治疗主要驱动因素的试验中,详细的电子数据可能被认为优于自我报告方法;但需要与第三方提供者达成数据共享协议,并且可能需要花费大量时间进行提取。当预期分析需要“社会”视角(例如量化非正式护理)时,仍将需要自我报告方法。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
9

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验