Suppr超能文献

生理信号数据的大数据应用综述。

A review of big data applications of physiological signal data.

作者信息

Orphanidou Christina

机构信息

Oxygen Research Ltd, 8 Vassileos Constantinou Street, 3075, Limassol, Cyprus.

出版信息

Biophys Rev. 2019 Feb;11(1):83-87. doi: 10.1007/s12551-018-0495-3. Epub 2019 Jan 9.

Abstract

The proliferation of smart physiological signal monitoring sensors, combined with the advancement of telemetry and intelligent communication systems, has led to an explosion in healthcare data in the past few years. Additionally, access to cheaper and more effective power and storage mechanisms has significantly increased the availability of healthcare data for the development of big data applications. Big data applications in healthcare are concerned with the analysis of datasets which are too big, too fast, and too complex for healthcare providers to process and interpret with existing tools. The driver for the development of such systems is the continuing effort in making healthcare services more efficient and sustainable. In this paper, we provide a review of current big data applications which utilize physiological waveforms or derived measurements in order to provide medical decision support, often in real time, in the clinical and home environment. We focus mainly on systems developed for continuous patient monitoring in critical care and discuss the challenges that need to be overcome such that these systems can be incorporated into clinical practice. Once these challenges are overcome, big data systems have the potential to transform healthcare management in the hospital of the future.

摘要

在过去几年中,智能生理信号监测传感器的激增,再加上遥测技术和智能通信系统的进步,导致医疗保健数据呈爆炸式增长。此外,更廉价且更有效的电力和存储机制的出现,显著提高了用于大数据应用开发的医疗保健数据的可用性。医疗保健领域的大数据应用涉及对数据集的分析,这些数据集规模太大、变化太快且过于复杂,以至于医疗服务提供者无法使用现有工具进行处理和解读。开发此类系统的驱动力在于持续努力提高医疗服务的效率和可持续性。在本文中,我们对当前利用生理波形或派生测量值以提供医疗决策支持(通常是实时的)的大数据应用进行综述,这些应用主要用于临床和家庭环境。我们主要关注为重症监护中的连续患者监测而开发的系统,并讨论需要克服的挑战,以便将这些系统纳入临床实践。一旦克服这些挑战,大数据系统就有可能改变未来医院的医疗管理。

相似文献

1
A review of big data applications of physiological signal data.生理信号数据的大数据应用综述。
Biophys Rev. 2019 Feb;11(1):83-87. doi: 10.1007/s12551-018-0495-3. Epub 2019 Jan 9.
3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Flexible quality of service model for wireless body area sensor networks.用于无线体域网的灵活服务质量模型
Healthc Technol Lett. 2016 Mar 16;3(1):12-5. doi: 10.1049/htl.2015.0049. eCollection 2016 Mar.
10
Concurrence of big data analytics and healthcare: A systematic review.大数据分析与医疗保健的并存:系统评价。
Int J Med Inform. 2018 Jun;114:57-65. doi: 10.1016/j.ijmedinf.2018.03.013. Epub 2018 Mar 26.

引用本文的文献

9
Robustness of electrocardiogram signal quality indices.心电图信号质量指数的稳健性。
J R Soc Interface. 2022 Apr;19(189):20220012. doi: 10.1098/rsif.2022.0012. Epub 2022 Apr 13.

本文引用的文献

2
Big Data and Data Science in Critical Care.危重病大数据与数据科学。
Chest. 2018 Nov;154(5):1239-1248. doi: 10.1016/j.chest.2018.04.037. Epub 2018 May 9.
8
Predicting hyperlactatemia in the MIMIC II database.预测MIMIC II数据库中的高乳酸血症。
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:985-8. doi: 10.1109/EMBC.2015.7318529.
9
Big Data Analytics in Healthcare.医疗保健中的大数据分析
Biomed Res Int. 2015;2015:370194. doi: 10.1155/2015/370194. Epub 2015 Jul 2.
10
Big data for health.健康大数据。
IEEE J Biomed Health Inform. 2015 Jul;19(4):1193-208. doi: 10.1109/JBHI.2015.2450362. Epub 2015 Jul 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验