Suppr超能文献

大数据对可穿戴传感器系统意味着什么?国际医学信息学协会可穿戴传感器在医疗保健工作组的贡献。

What Does Big Data Mean for Wearable Sensor Systems? Contribution of the IMIA Wearable Sensors in Healthcare WG.

作者信息

Redmond S J, Lovell N H, Yang G Z, Horsch A, Lukowicz P, Murrugarra L, Marschollek M

机构信息

Stephen Redmond,, Graduate School of Biomedical Engineering,, Level 5, Samuels Building,, Gate 11, Botany Street, UNSW Australia,, Kensington, NSW 2052,, Sydney, Australia, E-mail:

出版信息

Yearb Med Inform. 2014 Aug 15;9(1):135-42. doi: 10.15265/IY-2014-0019.

Abstract

OBJECTIVES

The aim of this paper is to discuss how recent developments in the field of big data may potentially impact the future use of wearable sensor systems in healthcare.

METHODS

The article draws on the scientific literature to support the opinions presented by the IMIA Wearable Sensors in Healthcare Working Group.

RESULTS

The following is discussed: the potential for wearable sensors to generate big data; how complementary technologies, such as a smartphone, will augment the concept of a wearable sensor and alter the nature of the monitoring data created; how standards would enable sharing of data and advance scientific progress. Importantly, attention is drawn to statistical inference problems for which big datasets provide little assistance, or may hinder the identification of a useful solution. Finally, a discussion is presented on risks to privacy and possible negative consequences arising from intensive wearable sensor monitoring.

CONCLUSIONS

Wearable sensors systems have the potential to generate datasets which are currently beyond our capabilities to easily organize and interpret. In order to successfully utilize wearable sensor data to infer wellbeing, and enable proactive health management, standards and ontologies must be developed which allow for data to be shared between research groups and between commercial systems, promoting the integration of these data into health information systems. However, policy and regulation will be required to ensure that the detailed nature of wearable sensor data is not misused to invade privacies or prejudice against individuals.

摘要

目标

本文旨在探讨大数据领域的最新发展可能如何潜在地影响可穿戴传感器系统在医疗保健领域的未来应用。

方法

本文借鉴科学文献来支持国际医学信息学协会医疗保健可穿戴传感器工作组提出的观点。

结果

讨论了以下内容:可穿戴传感器生成大数据的潜力;诸如智能手机等互补技术将如何增强可穿戴传感器的概念并改变所创建监测数据的性质;标准将如何实现数据共享并推动科学进步。重要的是,要注意到大数据集对其几乎没有帮助或可能阻碍找到有用解决方案的统计推断问题。最后,讨论了隐私风险以及密集的可穿戴传感器监测可能产生的负面后果。

结论

可穿戴传感器系统有可能生成目前我们难以轻松组织和解释的数据集。为了成功利用可穿戴传感器数据推断健康状况并实现主动健康管理,必须制定标准和本体,以便研究小组之间以及商业系统之间能够共享数据,促进这些数据融入健康信息系统。然而,需要政策和法规来确保可穿戴传感器数据的详细性质不会被滥用,从而侵犯隐私或对个人造成偏见。

相似文献

3
Wearable and implantable wireless sensor network solutions for healthcare monitoring.
Sensors (Basel). 2011;11(6):5561-95. doi: 10.3390/s110605561. Epub 2011 May 26.
4
Detecting vital signs with wearable wireless sensors.
Sensors (Basel). 2010;10(12):10837-62. doi: 10.3390/s101210837. Epub 2010 Dec 2.
6
Wireless fabric patch sensors for wearable healthcare.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5254-7. doi: 10.1109/IEMBS.2010.5626295.
8
Collaborative processing of wearable and ambient sensor system for blood pressure monitoring.
Sensors (Basel). 2011;11(7):6760-70. doi: 10.3390/s110706760. Epub 2011 Jun 28.
9
Wearable sensor systems for infants.
Sensors (Basel). 2015 Feb 5;15(2):3721-49. doi: 10.3390/s150203721.
10
Smart wearable systems: current status and future challenges.
Artif Intell Med. 2012 Nov;56(3):137-56. doi: 10.1016/j.artmed.2012.09.003. Epub 2012 Nov 1.

引用本文的文献

4
Memory-Aware Active Learning in Mobile Sensing Systems.
IEEE Trans Mob Comput. 2022 Jan 1;21(1):1. doi: 10.1109/tmc.2020.3003936. Epub 2020 Jun 22.
5
Open Source Software for the Real-Time Control, Processing, and Visualization of High-Volume Electrochemical Data.
Anal Chem. 2019 Oct 1;91(19):12321-12328. doi: 10.1021/acs.analchem.9b02553. Epub 2019 Sep 10.
6
Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia.
Alzheimers Dement. 2018 Sep;14(9):1216-1231. doi: 10.1016/j.jalz.2018.05.003. Epub 2018 Jun 21.
8
Health-Enabling and Ambient Assistive Technologies: Past, Present, Future.
Yearb Med Inform. 2016 Jun 30;Suppl 1(Suppl 1):S76-91. doi: 10.15265/IYS-2016-s008.
9
Big data for bipolar disorder.
Int J Bipolar Disord. 2016 Dec;4(1):10. doi: 10.1186/s40345-016-0051-7. Epub 2016 Apr 11.
10
'Do-It-Yourself' Healthcare? Quality of Health and Healthcare Through Wearable Sensors.
Sci Eng Ethics. 2018 Jun;24(3):887-904. doi: 10.1007/s11948-016-9771-4. Epub 2016 Mar 30.

本文引用的文献

1
Big data and the electronic health record.
J Ambul Care Manage. 2014 Jul-Sep;37(3):206-10. doi: 10.1097/JAC.0000000000000037.
2
Big data and biomedical informatics: a challenging opportunity.
Yearb Med Inform. 2014 May 22;9(1):8-13. doi: 10.15265/IY-2014-0024.
3
Development of a standard fall data format for signals from body-worn sensors : the FARSEEING consensus.
Z Gerontol Geriatr. 2013 Dec;46(8):720-6. doi: 10.1007/s00391-013-0554-0.
4
Fall detection with body-worn sensors : a systematic review.
Z Gerontol Geriatr. 2013 Dec;46(8):706-19. doi: 10.1007/s00391-013-0559-8.
5
Energy harvesting from the cardiovascular system, or how to get a little help from yourself.
Ann Biomed Eng. 2013 Nov;41(11):2248-63. doi: 10.1007/s10439-013-0887-2. Epub 2013 Aug 15.
7
Electrocardiogram signal quality measures for unsupervised telehealth environments.
Physiol Meas. 2012 Sep;33(9):1517-33. doi: 10.1088/0967-3334/33/9/1517. Epub 2012 Aug 17.
8
Evaluation of accelerometer-based fall detection algorithms on real-world falls.
PLoS One. 2012;7(5):e37062. doi: 10.1371/journal.pone.0037062. Epub 2012 May 16.
9
Signal quality measures for unsupervised blood pressure measurement.
Physiol Meas. 2012 Mar;33(3):465-86. doi: 10.1088/0967-3334/33/3/465. Epub 2012 Feb 28.
10
BioSignalML--a meta-model for biosignals.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5670-3. doi: 10.1109/IEMBS.2011.6091372.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验