Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia 4072.
School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia 4072.
Proteomics. 2019 Apr;19(8):e1800156. doi: 10.1002/pmic.201800156. Epub 2019 Jan 25.
The field of extracellular vesicle (EV) research has rapidly expanded in recent years, with particular interest in their potential as circulating biomarkers. Proteomic analysis of EVs from clinical samples is complicated by the low abundance of EV proteins relative to highly abundant circulating proteins such as albumin and apolipoproteins. To overcome this, size exclusion chromatography (SEC) has been proposed as a method to enrich EVs whilst depleting protein contaminants; however, the optimal SEC parameters for EV proteomics have not been thoroughly investigated. Here, quantitative evaluation and optimization of SEC are reported for separating EVs from contaminating proteins. Using a synthetic model system followed by cell line-derived EVs, it is found that a 10 mL Sepharose 4B column in PBS produces optimal resolution of EVs from background protein. By spiking-in cancer cell-derived EVs to healthy plasma, it is shown that some cancer EV-associated proteins are detectable by nano-LC-MS/MS when as little as 1% of the total plasma EV number are derived from a cancer cell line. These results suggest that an optimized SEC and nanoLC-MS/MS workflow may be sufficiently sensitive for disease EV protein biomarker discovery from patient-derived clinical samples.
近年来,细胞外囊泡(EV)研究领域迅速发展,人们对其作为循环生物标志物的潜力特别感兴趣。由于 EV 蛋白的丰度相对白蛋白和载脂蛋白等高度丰富的循环蛋白较低,因此对临床样本中的 EV 进行蛋白质组学分析较为复杂。为了克服这一问题,已提出大小排阻色谱(SEC)作为一种富集 EV 并去除蛋白污染物的方法;然而,EV 蛋白质组学的最佳 SEC 参数尚未得到深入研究。本文报告了 SEC 定量评估和优化,以分离 EV 和污染蛋白。使用合成模型系统和细胞系衍生的 EV 进行研究,结果发现 PBS 中的 10 mL Sepharose 4B 柱可从背景蛋白中产生最佳的 EV 分辨率。通过向健康血浆中掺入癌细胞衍生的 EV,可以表明当源自癌细胞系的总血浆 EV 数的 1%时,通过纳米 LC-MS/MS 可检测到一些癌症 EV 相关蛋白。这些结果表明,优化的 SEC 和 nanoLC-MS/MS 工作流程可能足以从患者衍生的临床样本中发现疾病 EV 蛋白生物标志物。