Suppr超能文献

优化排阻色谱法从临床相关样本中富集细胞外囊泡并进行蛋白质组学分析。

Optimizing Size Exclusion Chromatography for Extracellular Vesicle Enrichment and Proteomic Analysis from Clinically Relevant Samples.

机构信息

Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia 4072.

School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia 4072.

出版信息

Proteomics. 2019 Apr;19(8):e1800156. doi: 10.1002/pmic.201800156. Epub 2019 Jan 25.

Abstract

The field of extracellular vesicle (EV) research has rapidly expanded in recent years, with particular interest in their potential as circulating biomarkers. Proteomic analysis of EVs from clinical samples is complicated by the low abundance of EV proteins relative to highly abundant circulating proteins such as albumin and apolipoproteins. To overcome this, size exclusion chromatography (SEC) has been proposed as a method to enrich EVs whilst depleting protein contaminants; however, the optimal SEC parameters for EV proteomics have not been thoroughly investigated. Here, quantitative evaluation and optimization of SEC are reported for separating EVs from contaminating proteins. Using a synthetic model system followed by cell line-derived EVs, it is found that a 10 mL Sepharose 4B column in PBS produces optimal resolution of EVs from background protein. By spiking-in cancer cell-derived EVs to healthy plasma, it is shown that some cancer EV-associated proteins are detectable by nano-LC-MS/MS when as little as 1% of the total plasma EV number are derived from a cancer cell line. These results suggest that an optimized SEC and nanoLC-MS/MS workflow may be sufficiently sensitive for disease EV protein biomarker discovery from patient-derived clinical samples.

摘要

近年来,细胞外囊泡(EV)研究领域迅速发展,人们对其作为循环生物标志物的潜力特别感兴趣。由于 EV 蛋白的丰度相对白蛋白和载脂蛋白等高度丰富的循环蛋白较低,因此对临床样本中的 EV 进行蛋白质组学分析较为复杂。为了克服这一问题,已提出大小排阻色谱(SEC)作为一种富集 EV 并去除蛋白污染物的方法;然而,EV 蛋白质组学的最佳 SEC 参数尚未得到深入研究。本文报告了 SEC 定量评估和优化,以分离 EV 和污染蛋白。使用合成模型系统和细胞系衍生的 EV 进行研究,结果发现 PBS 中的 10 mL Sepharose 4B 柱可从背景蛋白中产生最佳的 EV 分辨率。通过向健康血浆中掺入癌细胞衍生的 EV,可以表明当源自癌细胞系的总血浆 EV 数的 1%时,通过纳米 LC-MS/MS 可检测到一些癌症 EV 相关蛋白。这些结果表明,优化的 SEC 和 nanoLC-MS/MS 工作流程可能足以从患者衍生的临床样本中发现疾病 EV 蛋白生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验