Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany.
Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
Adv Healthc Mater. 2019 Mar;8(5):e1801226. doi: 10.1002/adhm.201801226. Epub 2019 Jan 13.
2D electrophysiology is often used to determine the electrical properties of neurons. In the brain however, neurons form extensive 3D networks. Thus, performing electrophysiology in a 3D environment provides a closer situation to the physiological condition and serves as a useful tool for various applications in the field of neuroscience. In this study, 3D electrophysiology is established within a fiber-reinforced matrix to enable fast readouts from transfected cells, which are often used as model systems for 2D electrophysiology. Using melt electrowriting (MEW) of scaffolds to reinforce Matrigel, 3D electrophysiology is performed on a glycine receptor-transfected Ltk-11 mouse fibroblast cell line. The glycine receptor is an inhibitory ion channel associated when mutated with impaired neuromotor behavior. The average thickness of the MEW scaffold is 141.4 ± 5.7 µm, using 9.7 ± 0.2 µm diameter fibers, and square pore spacings of 100, 200, and 400 µm. For the first time, the electrophysiological characterization of glycine receptor-transfected cells is demonstrated with respect to agonist efficacy and potency in a 3D matrix. With the MEW scaffold reinforcement not interfering with the electrophysiological measurement, this approach can now be further adapted and developed for different kinds of neuronal cultures to study and understand pathological mechanisms under disease conditions.
2D 电生理学常用于确定神经元的电特性。然而,在大脑中,神经元形成广泛的 3D 网络。因此,在 3D 环境中进行电生理学实验更接近生理条件,是神经科学领域各种应用的有用工具。在这项研究中,在纤维增强基质内建立了 3D 电生理学,以实现转染细胞的快速读取,转染细胞通常用作 2D 电生理学的模型系统。使用熔融电纺(MEW)支架来增强 Matrigel,对转染甘氨酸受体的 Ltk-11 小鼠成纤维细胞系进行 3D 电生理学实验。甘氨酸受体是一种抑制性离子通道,当其突变时会导致运动神经行为受损。使用 9.7 ± 0.2 µm 直径的纤维和 100、200 和 400 µm 的方形孔间距,MEW 支架的平均厚度为 141.4 ± 5.7 µm。首次在 3D 基质中展示了转染甘氨酸受体的细胞的电生理学特性,包括激动剂的效力和效力。由于 MEW 支架增强不干扰电生理测量,因此现在可以进一步适应和开发用于不同类型神经元培养物的方法,以研究和理解疾病条件下的病理机制。