Suppr超能文献

基于傅里叶变换近红外光谱和 X 射线成像融合数据的种子质量分类机器学习方法

Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging.

机构信息

Agronomy Department, Federal University of Viçosa, Viçosa MG 36570-900, Brazil.

Chemistry Department, Federal University of Viçosa, Viçosa MG 36570-900, Brazil.

出版信息

Sensors (Basel). 2020 Aug 3;20(15):4319. doi: 10.3390/s20154319.

Abstract

Optical sensors combined with machine learning algorithms have led to significant advances in seed science. These advances have facilitated the development of robust approaches, providing decision-making support in the seed industry related to the marketing of seed lots. In this study, a novel approach for seed quality classification is presented. We developed classifier models using Fourier transform near-infrared (FT-NIR) spectroscopy and X-ray imaging techniques to predict seed germination and vigor. A forage grass () was used as a model species. FT-NIR spectroscopy data and radiographic images were obtained from individual seeds, and the models were created based on the following algorithms: linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), random forest (RF), naive Bayes (NB), and support vector machine with radial basis (SVM-) kernel. In the germination prediction, the models individually reached an accuracy of 82% using FT-NIR data, and 90% using X-ray data. For seed vigor, the models achieved 61% and 68% accuracy using FT-NIR and X-ray data, respectively. Combining the FT-NIR and X-ray data, the performance of the classification model reached an accuracy of 85% to predict germination, and 62% for seed vigor. Overall, the models developed using both NIR spectra and X-ray imaging data in machine learning algorithms are efficient in quickly, non-destructively, and accurately identifying the capacity of seed to germinate. The use of X-ray data and the LDA algorithm showed great potential to be used as a viable alternative to assist in the quality classification of seeds.

摘要

光学传感器与机器学习算法相结合,推动了种子科学的重大进展。这些进展促进了稳健方法的发展,为种子行业提供了与种子批营销相关的决策支持。在这项研究中,提出了一种新的种子质量分类方法。我们使用傅里叶变换近红外(FT-NIR)光谱和 X 射线成像技术开发了分类器模型,以预测种子发芽和活力。以一种饲草()作为模型物种。FT-NIR 光谱数据和射线照相图像从单个种子中获得,并且基于以下算法创建了模型:线性判别分析(LDA)、偏最小二乘判别分析(PLS-DA)、随机森林(RF)、朴素贝叶斯(NB)和支持向量机(SVM-)核。在发芽预测中,模型单独使用 FT-NIR 数据达到 82%的准确率,使用 X 射线数据达到 90%的准确率。对于种子活力,模型分别使用 FT-NIR 和 X 射线数据达到 61%和 68%的准确率。将 FT-NIR 和 X 射线数据结合使用,分类模型的性能达到 85%的发芽预测准确率,62%的种子活力预测准确率。总体而言,使用机器学习算法中的近红外光谱和 X 射线成像数据开发的模型在快速、无损、准确识别种子发芽能力方面非常有效。X 射线数据和 LDA 算法的使用显示出作为可行替代方案来辅助种子质量分类的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验