Suppr超能文献

基于颜色与高光谱图像特征融合及多变量分析的水稻种子活力预测

Paddy seed viability prediction based on feature fusion of color and hyperspectral image with multivariate analysis.

作者信息

Siam Abdullah Al, Salehin M Mirazus, Alam Md Shahinur, Ahamed Sahabuddin, Islam Md Hamidul, Rahman Anisur

机构信息

Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

出版信息

Heliyon. 2024 Aug 27;10(17):e36999. doi: 10.1016/j.heliyon.2024.e36999. eCollection 2024 Sep 15.

Abstract

Seed viability is essential to have a homogeneous plant population. The seed industry cannot adopt traditional procedures for seed viability evaluation since they are destructive, time-consuming, and need chemicals. This study aimed to investigate the potential of combining hyperspectral and color image features to differentiate viable and non-viable paddy seeds. The hyperspectral and color image of the 355 paddy seeds was captured and later used to examine their viability. An image processing algorithm was developed to extract features from color images of paddy seeds and investigated significant differences in the retrieved feature data using variance analysis. The spectra were extracted from the selected region of interest (ROI) of the hyperspectral paddy seed image and averaged. In the next step, the partial least square discrimination analysis (PLS-DA) model was developed to distinguish viable and non-viable paddy seeds. Initially, the PLS-DA model was developed using spectral data with different preprocessing techniques, and the result obtained an accuracy of 88.9 % in the calibration set and 86.1 % in the prediction set using Savitzky-Golay 2 derivative preprocessed spectra. With the fusion of spectral and significant color image features, the model's accuracy improved to 93.3 % and 90.9 % in the calibration and prediction sets, respectively. Results also showed that the fusion of selected color image features with Savitzky-Golay 2 derivative preprocessed spectra could achieve higher F1-score, recall, and precision values. The visualization map for the viable and non-viable paddy seeds was also developed utilizing the most effective predictive model. The results demonstrate the possibility of using the fusion of the hyperspectral and color image features to sort seeds according to viability, which may be applied in developing an online seed sorting method.

摘要

种子活力对于获得均匀的植株群体至关重要。种子行业无法采用传统的种子活力评估程序,因为这些程序具有破坏性、耗时且需要使用化学物质。本研究旨在探讨结合高光谱和彩色图像特征来区分有活力和无活力水稻种子的潜力。采集了355颗水稻种子的高光谱和彩色图像,随后用于检测它们的活力。开发了一种图像处理算法,从水稻种子的彩色图像中提取特征,并使用方差分析研究检索到的特征数据中的显著差异。从高光谱水稻种子图像的选定感兴趣区域(ROI)提取光谱并进行平均。下一步,开发了偏最小二乘判别分析(PLS-DA)模型来区分有活力和无活力的水稻种子。最初,使用具有不同预处理技术的光谱数据开发PLS-DA模型,使用Savitzky-Golay 2阶导数预处理光谱时,在校准集中获得的准确率为88.9%,在预测集中为86.1%。通过融合光谱和显著的彩色图像特征,模型在校准集和预测集中的准确率分别提高到93.3%和90.9%。结果还表明,将选定的彩色图像特征与Savitzky-Golay 2阶导数预处理光谱融合可以获得更高的F1分数、召回率和精确率值。还利用最有效的预测模型绘制了有活力和无活力水稻种子的可视化图。结果表明,利用高光谱和彩色图像特征的融合根据活力对种子进行分选是可行的,这可能应用于开发一种在线种子分选方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffb/11401164/5861d59d117b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验