Suppr超能文献

利用突变型 p53 特异性 siRNA 进行癌症治疗靶向。

Cancer therapeutic targeting using mutant-p53-specific siRNAs.

机构信息

Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore.

Houston Methodist Cancer Center, 6445 Main St, Houston, TX, 77030, USA.

出版信息

Oncogene. 2019 May;38(18):3415-3427. doi: 10.1038/s41388-018-0652-y. Epub 2019 Jan 14.

Abstract

Mutations in Tp53 compromise therapeutic response, due either to the dominant-negative effect over the functional wild-type allele; or as a result of the survival advantage conferred by mutant p53 to which cancer cells become addicted. Thus, targeting mutant p53 represents an effective therapeutic strategy to treat over half of all cancers. We have therefore generated a series of small-interfering-RNAs, capable of targeting four p53 hot-spot mutants which represent ~20% of all p53 mutations. These mutant-p53-specific siRNAs (MupSi) are highly specific in silencing the expression of the intended mutants without affecting wild-type p53. Functionally, these MupSis induce cell death by abrogating both the addiction to mutant p53 and the dominant-negative effect; and retard tumor growth in xenografts when administered in a therapeutic setting. These data together demonstrate the possibility of targeting mutant p53 specifically to improve clinical outcome.

摘要

突变的 TP53 会影响治疗反应,要么是因为功能正常的野生型等位基因的显性负效应;要么是因为突变型 p53 赋予了癌细胞生存优势,使它们对此产生了依赖。因此,针对突变型 p53 代表了一种有效的治疗策略,可以治疗超过一半的所有癌症。因此,我们生成了一系列小干扰 RNA,可以靶向四个 p53 热点突变,这些突变约占所有 p53 突变的 20%。这些针对突变型 p53 的特异性 siRNA(MupSi)在沉默预期突变体的表达方面具有高度特异性,而不影响野生型 p53。从功能上讲,这些 MupSi 通过消除对突变型 p53 的依赖和显性负效应,诱导细胞死亡;并在治疗性给药时减缓异种移植物中的肿瘤生长。这些数据共同证明了靶向突变型 p53 以改善临床结果的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f7/6756012/222841df7b1b/41388_2018_652_Fig1_HTML.jpg

相似文献

1
Cancer therapeutic targeting using mutant-p53-specific siRNAs.
Oncogene. 2019 May;38(18):3415-3427. doi: 10.1038/s41388-018-0652-y. Epub 2019 Jan 14.
2
5
Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53.
Br J Cancer. 2016 Nov 8;115(10):1253-1263. doi: 10.1038/bjc.2016.331. Epub 2016 Oct 13.
7
Death-associated protein kinase 1 promotes growth of p53-mutant cancers.
J Clin Invest. 2015 Jul 1;125(7):2707-20. doi: 10.1172/JCI70805. Epub 2015 Jun 15.
8
Silencing of stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53.
Oncogene. 2007 Feb 15;26(7):1003-12. doi: 10.1038/sj.onc.1209864. Epub 2006 Aug 14.
9
Targeting mutant p53 for cancer therapy: direct and indirect strategies.
J Hematol Oncol. 2021 Sep 28;14(1):157. doi: 10.1186/s13045-021-01169-0.
10
G Protein-Coupled Receptor 87 (GPR87) Promotes Cell Proliferation in Human Bladder Cancer Cells.
Int J Mol Sci. 2015 Oct 14;16(10):24319-31. doi: 10.3390/ijms161024319.

引用本文的文献

2
Molecular targets and therapies associated with poor prognosis of triple‑negative breast cancer (Review).
Int J Oncol. 2025 Jun;66(6). doi: 10.3892/ijo.2025.5758. Epub 2025 May 30.
3
Mutant p53 Gain of Function: Why Many See It, Why Some Do Not.
Cancer Discov. 2025 Jun 3;15(6):1099-1104. doi: 10.1158/2159-8290.CD-24-1638.
5
Molecular Interplay Between Non-Coding RNAs and Connexins and Its Possible Role in Cancer.
Int J Mol Sci. 2025 Mar 12;26(6):2538. doi: 10.3390/ijms26062538.
6
Advancements in -Based Anti-Tumor Gene Therapy Research.
Molecules. 2024 Nov 11;29(22):5315. doi: 10.3390/molecules29225315.
8
DNA-delivered monoclonal antibodies targeting the p53 R175H mutant epitope inhibit tumor development in mice.
Genes Dis. 2023 Jun 23;11(4):100994. doi: 10.1016/j.gendis.2023.04.027. eCollection 2024 Jul.
10
Translating p53-based therapies for cancer into the clinic.
Nat Rev Cancer. 2024 Mar;24(3):192-215. doi: 10.1038/s41568-023-00658-3. Epub 2024 Jan 29.

本文引用的文献

1
Monoclonal Antibodies against Specific p53 Hotspot Mutants as Potential Tools for Precision Medicine.
Cell Rep. 2018 Jan 2;22(1):299-312. doi: 10.1016/j.celrep.2017.11.112.
2
Allele-specific silencing therapy for Dynamin 2-related dominant centronuclear myopathy.
EMBO Mol Med. 2018 Feb;10(2):239-253. doi: 10.15252/emmm.201707988.
3
The target landscape of clinical kinase drugs.
Science. 2017 Dec 1;358(6367). doi: 10.1126/science.aan4368.
4
A precision therapy against cancers driven by mutations.
Sci Transl Med. 2017 Nov 1;9(414). doi: 10.1126/scitranslmed.aao1690.
5
Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others.
Nat Rev Clin Oncol. 2018 Jan;15(1):13-30. doi: 10.1038/nrclinonc.2017.151. Epub 2017 Sep 26.
6
Role of RPL39 in Metaplastic Breast Cancer.
J Natl Cancer Inst. 2016 Dec 31;109(6). doi: 10.1093/jnci/djw292. Print 2017 Jun.
7
RNA-targeted therapeutics in cancer clinical trials: Current status and future directions.
Cancer Treat Rev. 2016 Nov;50:35-47. doi: 10.1016/j.ctrv.2016.08.004. Epub 2016 Aug 28.
8
Fischer-344 Tp53-knockout rats exhibit a high rate of bone and brain neoplasia with frequent metastasis.
Dis Model Mech. 2016 Oct 1;9(10):1139-1146. doi: 10.1242/dmm.025767. Epub 2016 Aug 15.
9
TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data.
Hum Mutat. 2016 Sep;37(9):865-76. doi: 10.1002/humu.23035. Epub 2016 Jul 8.
10
The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma.
Expert Opin Drug Discov. 2016 Sep;11(9):907-16. doi: 10.1080/17460441.2016.1201057. Epub 2016 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验