Suppr超能文献

微生物碱性蛋白酶:生产参数的优化及其性质

Microbial alkaline proteases: Optimization of production parameters and their properties.

作者信息

Sharma Kanupriya Miglani, Kumar Rajesh, Panwar Surbhi, Kumar Ashwani

机构信息

Department of Biotechnology Engineering, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra 136119, India.

Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, Uttar Pradesh, India.

出版信息

J Genet Eng Biotechnol. 2017 Jun;15(1):115-126. doi: 10.1016/j.jgeb.2017.02.001. Epub 2017 Feb 27.

Abstract

Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

摘要

蛋白酶是能够将蛋白质降解为小肽和氨基酸的水解酶。它们占整个工业酶市场的近60%。蛋白酶在食品、制药、皮革和洗涤剂行业有广泛的商业应用。鉴于其潜在用途,人们对发现具有新特性的蛋白酶重新产生了兴趣,并不断致力于优化酶的生产。本综述总结了关于碱性蛋白酶各个方面的大量报告中的一部分。报道了分离产碱性蛋白酶微生物的多种来源。描述了影响深层发酵和固态发酵中碱性蛋白酶生产的各种营养和环境参数。讨论了几种微生物来源的碱性蛋白酶的酶学和物理化学性质,这有助于鉴定在极端pH和温度下具有高活性和稳定性的酶,以便将它们开发用于工业应用。

相似文献

1
Microbial alkaline proteases: Optimization of production parameters and their properties.
J Genet Eng Biotechnol. 2017 Jun;15(1):115-126. doi: 10.1016/j.jgeb.2017.02.001. Epub 2017 Feb 27.
2
Microbial alkaline serine proteases: Production, properties and applications.
World J Microbiol Biotechnol. 2021 Mar 17;37(4):63. doi: 10.1007/s11274-021-03036-z.
3
Fungal alkaline proteases and their potential applications in different industries.
Front Microbiol. 2023 Mar 30;14:1138401. doi: 10.3389/fmicb.2023.1138401. eCollection 2023.
4
5
An overview of Bacillus proteases: from production to application.
Crit Rev Biotechnol. 2018 May;38(3):321-334. doi: 10.1080/07388551.2017.1354354. Epub 2017 Aug 8.
6
Kinetics, detergent compatibility and feather-degrading capability of alkaline protease from AKAL7 and AKAL11 produced with fermentation of organic municipal solid wastes.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2020;55(11):1339-1348. doi: 10.1080/10934529.2020.1794207. Epub 2020 Jul 15.
7
An overview on fermentation, downstream processing and properties of microbial alkaline proteases.
Appl Microbiol Biotechnol. 2002 Dec;60(4):381-95. doi: 10.1007/s00253-002-1142-1. Epub 2002 Oct 12.
8
Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector.
Int J Biol Macromol. 2018 Oct 1;117:493-522. doi: 10.1016/j.ijbiomac.2018.05.217. Epub 2018 May 30.
9
Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil.
PLoS One. 2017 Nov 30;12(11):e0188724. doi: 10.1371/journal.pone.0188724. eCollection 2017.
10
Microbial alkaline proteases: from a bioindustrial viewpoint.
Biotechnol Adv. 1999 Dec 15;17(7):561-94. doi: 10.1016/s0734-9750(99)00027-0.

引用本文的文献

2
Taxonomic and functional diversity of alkali-tolerant bacteria enriched from the Taklimakan Desert.
Front Microbiol. 2025 Aug 7;16:1580401. doi: 10.3389/fmicb.2025.1580401. eCollection 2025.
5
Preparation and characterization of immunopeptides isolated from pig spleen and evaluation of their immunomodulatory properties and .
Front Immunol. 2025 Mar 18;16:1544299. doi: 10.3389/fimmu.2025.1544299. eCollection 2025.
6
Response surface methodology to optimize the var. liquid fermentation process for the production of fibrinolytic enzyme.
J Food Sci Technol. 2025 Apr;62(4):654-666. doi: 10.1007/s13197-024-06051-8. Epub 2024 Oct 16.
8
Enhanced Stability and Reusability of Subtilisin Carlsberg Through Immobilization on Magnetic Nanoparticles.
Nanotechnol Sci Appl. 2025 Feb 19;18:71-91. doi: 10.2147/NSA.S499101. eCollection 2025.
10
Heterologous expression, purification, and biochemical characterization of protease 3075 from Cohnella sp. A01.
PLoS One. 2024 Dec 16;19(12):e0310910. doi: 10.1371/journal.pone.0310910. eCollection 2024.

本文引用的文献

1
Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF.
3 Biotech. 2016 Dec;6(2):167. doi: 10.1007/s13205-016-0481-z. Epub 2016 Aug 12.
2
Bacterial proteases: targets for diagnostics and therapy.
Eur J Clin Microbiol Infect Dis. 2014 Jul;33(7):1081-7. doi: 10.1007/s10096-014-2075-1. Epub 2014 Feb 18.
5
Microbial proteases: detection, production, and genetic improvement.
Crit Rev Microbiol. 2011 Aug;37(3):262-76. doi: 10.3109/1040841X.2011.577029. Epub 2011 May 21.
6
Purification of Protease from Pseudomonas thermaerum GW1 Isolated from Poultry Waste Site.
Open Microbiol J. 2010 Aug 13;4:67-74. doi: 10.2174/1874285801004010067.
7
An alkali-thermotolerant extracellular protease from a newly isolated Streptomyces sp. DP2.
N Biotechnol. 2011 Oct;28(6):725-32. doi: 10.1016/j.nbt.2011.01.001. Epub 2011 Jan 11.
9
A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization.
N Biotechnol. 2011 Feb 28;28(2):173-81. doi: 10.1016/j.nbt.2010.10.002. Epub 2010 Oct 14.
10
Alkaline protease from Bacillus cereus VITSN04: Potential application as a dehairing agent.
J Biosci Bioeng. 2011 Feb;111(2):128-33. doi: 10.1016/j.jbiosc.2010.09.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验