文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

菌株改良与统计优化相结合作为提高NAC8果糖基转移酶产量的策略

Strain improvement and statistical optimization as a combined strategy for improving fructosyltransferase production by NAC8.

作者信息

Ademakinwa Adedeji Nelson, Ayinla Zainab Adenike, Agboola Femi Kayode

机构信息

Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria.

出版信息

J Genet Eng Biotechnol. 2017 Dec;15(2):345-358. doi: 10.1016/j.jgeb.2017.06.012. Epub 2017 Jul 4.


DOI:10.1016/j.jgeb.2017.06.012
PMID:30647673
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6296646/
Abstract

Strain improvement of a low fructosyltransferase-producing NAC8 (Accession No. KX023301) was carried out using chemical mutagens such as ethidium bromide and ethyl methane sulfonate. The wild-type and mutant strain were distinguished using Random amplified polymorphic DNA PCR and DNA fingerprinting analysis. Plackett-Burman and Box Behnken design were statistical tools used to determine important media parameters and optimization, respectively. Phenotypically and genetically, the new improved strain was different from the wild-type. The most important media parameters from PDB influencing fructosyltransferase production were ammonium chloride, sucrose and yeast extract at  < 0.05. Some significant parameters obtained with the BBD exhibited quadratic effects on FTase. The values (35.37 and 32.11), correlation coefficient (0.98 and 0.97) and the percent coefficient of variation (2.53% and 2.40%) were obtained for extracellular and intracellular FTase respectively. The validation of the model in the improved strain resulted in an overall 6.0 and 2.0-fold increase in extracellular and intracellular FTase respectively compared to the wild-type. A relatively low FTase-producing strain of NAC8 was enhanced for optimum production using a two-pronged approach involving mutagenesis and statistical optimization. The improved mutant strain also had remarkable biotechnological properties that make it a suitable alternative than the wild-type.

摘要

使用溴化乙锭和甲磺酸乙酯等化学诱变剂对低果糖基转移酶产生菌NAC8(登录号KX023301)进行菌株改良。通过随机扩增多态性DNA PCR和DNA指纹分析区分野生型和突变株。Plackett-Burman设计和Box Behnken设计分别是用于确定重要培养基参数和优化的统计工具。从表型和基因方面来看,新的改良菌株与野生型不同。对果糖基转移酶产生有影响的来自马铃薯葡萄糖肉汤(PDB)的最重要培养基参数是氯化铵、蔗糖和酵母提取物,P < 0.05。通过Box Behnken设计(BBD)获得的一些显著参数对果糖基转移酶表现出二次效应。胞外和胞内果糖基转移酶分别获得了值(35.37和32.11)、相关系数(0.98和0.97)以及变异系数百分比(2.53%和2.40%)。与野生型相比,改良菌株中模型的验证结果使胞外和胞内果糖基转移酶分别总体提高了6.0倍和2.0倍。采用诱变和统计优化相结合的双管齐下方法,提高了相对低产果糖基转移酶的NAC8菌株的产量以达到最佳生产水平。改良的突变株还具有显著的生物技术特性,使其成为比野生型更合适的替代菌株。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/a7699bbd9870/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/0353f409e103/gr1a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/613d7c8c4ff2/gr1b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/80d7e4db6ff2/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/db564f55931b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/eaba289aee52/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/8d2dc4520edf/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/95a2b57f7a73/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/7f2f4afb89fe/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/eef9aa52666d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/1d1ccc7c639a/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/9756cfacb700/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/a7699bbd9870/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/0353f409e103/gr1a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/613d7c8c4ff2/gr1b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/80d7e4db6ff2/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/db564f55931b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/eaba289aee52/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/8d2dc4520edf/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/95a2b57f7a73/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/7f2f4afb89fe/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/eef9aa52666d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/1d1ccc7c639a/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/9756cfacb700/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/6296646/a7699bbd9870/gr11.jpg

相似文献

[1]
Strain improvement and statistical optimization as a combined strategy for improving fructosyltransferase production by NAC8.

J Genet Eng Biotechnol. 2017-12

[2]
Biochemical characterization and kinetic studies on a purified yellow laccase from newly isolated NAC8 obtained from soil containing decayed plant matter.

J Genet Eng Biotechnol. 2016-6

[3]
Production optimization, characterization and gene expression of pullulan from a new strain of Aureobasidium pullulans.

Int J Biol Macromol. 2019-7-21

[4]
Identification of cholesterol-assimilating actinomycetes strain and application of statistical modeling approaches for improvement of cholesterol oxidase production by Streptomyces anulatus strain NEAE-94.

BMC Microbiol. 2020-4-10

[5]
-Fructofuranosidase and -D-Fructosyltransferase from New PC-4 Strain Isolated from Canned Peach Syrup: Effect of Carbon and Nitrogen Sources on Enzyme Production.

ScientificWorldJournal. 2019-1-8

[6]
Improved production of β-glucan by a T-DNA-based mutant of Aureobasidium pullulans.

Appl Microbiol Biotechnol. 2021-9

[7]
Optimization of culture medium for enhanced production of exopolysaccharide from Aureobasidium pullulans.

Bioprocess Biosyst Eng. 2011-9-14

[8]
A comparative study using response surface methodology and artificial neural network towards optimized production of melanin by Aureobasidium pullulans AKW.

Sci Rep. 2023-8-19

[9]
Statistical optimization of process parameters for exopolysaccharide production by Aureobasidium pullulans using sweet potato based medium.

3 Biotech. 2015-12

[10]
Optimization and characterization of pullulan produced by a newly identified strain of Aureobasidium pullulans.

Int J Biol Macromol. 2020-6-1

引用本文的文献

[1]
Optimization of the fermentation process for fructosyltransferase production by Aspergillus niger FS054.

Microb Cell Fact. 2025-7-27

[2]
Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers.

Polymers (Basel). 2024-2-1

[3]
Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants.

Front Plant Sci. 2023-9-12

[4]
Oligosaccharides production from coprophilous fungi: An emerging functional food with potential health-promoting properties.

Biotechnol Rep (Amst). 2022-1-21

[5]
New insights in pectinase production development and industrial applications.

Appl Microbiol Biotechnol. 2021-12

[6]
Fatty Acids Derivatives From Eukaryotic Microalgae, Pathways and Potential Applications.

Front Microbiol. 2021-9-29

[7]
Purification and biochemical characterization of an extracellular fructosyltransferase enzyme from sp. XOBP48: implication in fructooligosaccharide production.

3 Biotech. 2020-10

本文引用的文献

[1]
Biochemical characterization and kinetic studies on a purified yellow laccase from newly isolated NAC8 obtained from soil containing decayed plant matter.

J Genet Eng Biotechnol. 2016-6

[2]
Strategies for the production of high-content fructo-oligosaccharides through the removal of small saccharides by co-culture or successive fermentation with yeast.

Carbohydr Polym. 2015-8-31

[3]
Biotechnological production and application of fructooligosaccharides.

Crit Rev Biotechnol. 2016

[4]
Fructo-oligosaccharides: Production, Purification and Potential Applications.

Crit Rev Food Sci Nutr. 2015

[5]
New improved method for fructooligosaccharides production by Aureobasidium pullulans.

Carbohydr Polym. 2012-4-10

[6]
Combinatorial approach of statistical optimization and mutagenesis for improved production of acidic phytase by Aspergillus niger NCIM 563 under submerged fermentation condition.

Appl Microbiol Biotechnol. 2012-3-1

[7]
Fructooligosaccharide production by Penicillium expansum.

Biotechnol Lett. 2010-3-7

[8]
Optimization and modeling of phenanthrene degradation by Mycobacterium sp. 6PY1 in a biphasic medium using response-surface methodology.

Appl Microbiol Biotechnol. 2008-4

[9]
New and simple plate test for screening relative transfructosylation activity of fungi.

Rev Iberoam Micol. 2006-9

[10]
Isolation of new aureobasidium strains that produce high-molecular-weight pullulan with reduced pigmentation.

Appl Environ Microbiol. 1992-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索