The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
Cell Rep. 2019 Jan 15;26(3):788-801.e6. doi: 10.1016/j.celrep.2018.12.083.
EndoC-βH1 is emerging as a critical human β cell model to study the genetic and environmental etiologies of β cell (dys)function and diabetes. Comprehensive knowledge of its molecular landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal (spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of EndoC-βH1. Analyses of these maps define known (e.g., PDX1 and ISL1) and putative (e.g., PCSK1 and mir-375) β cell-specific transcriptional cis-regulatory networks and identify allelic effects on cis-regulatory element use. Importantly, comparison with maps generated in primary human islets and/or β cells indicates preservation of chromatin looping but also highlights chromosomal aberrations and fetal genomic signatures in EndoC-βH1. Together, these maps, and a web application we created for their exploration, provide important tools for the design of experiments to probe and manipulate the genetic programs governing β cell identity and (dys)function in diabetes.
EndoC-βH1 正在成为研究β细胞(功能)障碍和糖尿病的遗传和环境病因的重要人类β细胞模型。为了有效利用该模型,全面了解其分子图谱是必要的,但目前还缺乏这方面的知识。在这里,我们报告了 EndoC-βH1 的染色体(光谱核型分析)、遗传(基因分型)、表观基因组(ChIP-seq 和 ATAC-seq)、染色质相互作用(Hi-C 和 Pol2 ChIA-PET)和转录组(RNA-seq 和 miRNA-seq)图谱。对这些图谱的分析定义了已知(例如,PDX1 和 ISL1)和推测的(例如,PCSK1 和 mir-375)β细胞特异性转录顺式调控网络,并确定了等位基因对顺式调控元件使用的影响。重要的是,与在原代人胰岛和/或β细胞中生成的图谱进行比较表明,染色质环化得到了保留,但也突出了 EndoC-βH1 中的染色体异常和胎儿基因组特征。这些图谱以及我们为探索它们而创建的网络应用程序,为设计实验提供了重要工具,以探究和操纵控制β细胞身份和(功能)障碍的遗传程序。