Martí José María, Müller Ewald
1Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.
2Observatori Astronòmic, Universidad de Valencia, 46980 Burjassot, Valencia, Spain.
Living Rev Comput Astrophys. 2015;1(1):3. doi: 10.1007/lrca-2015-3. Epub 2015 Dec 22.
An overview of grid-based numerical methods used in relativistic hydrodynamics (RHD) and magnetohydrodynamics (RMHD) is presented. Special emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods. Results of a set of demanding test bench simulations obtained with different numerical methods are compared in an attempt to assess the present capabilities and limits of the various numerical strategies. Applications to three astrophysical phenomena are briefly discussed to motivate the need for and to demonstrate the success of RHD and RMHD simulations in their understanding. The review further provides FORTRAN programs to compute the exact solution of the Riemann problem in RMHD, and to simulate 1D RMHD flows in Cartesian coordinates.
Supplementary material is available for this article at 10.1007/lrca-2015-3.
本文概述了相对论流体动力学(RHD)和磁流体动力学(RMHD)中基于网格的数值方法。特别着重于对高分辨率激波捕捉方法应用的全面综述。比较了使用不同数值方法获得的一组严格测试台模拟结果,以评估各种数值策略当前的能力和局限性。简要讨论了三种天体物理现象的应用,以激发对RHD和RMHD模拟的需求,并展示其在理解这些现象方面的成功。该综述还提供了用于计算RMHD中黎曼问题精确解以及模拟笛卡尔坐标系中一维RMHD流的FORTRAN程序。
本文的补充材料可在10.1007/lrca - 2015 - 3获取。