Department of Theoretical Chemistry, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden.
Phys Chem Chem Phys. 2019 Jan 30;21(5):2480-2488. doi: 10.1039/c8cp06930a.
Nitrogenase is the only enzyme that can cleave the triple bond in N2, making nitrogen avaiable for other organisms. It contains a complicated MoFe7S9C(homocitrate) cluster in its active site. Many computational studies with density-functional theory (DFT) of the nitrogenase enzyme have been presented, but they do not show any consensus - they do not even agree where the first four protons should be added, forming the central intermediate E4. We show that the prime reason for this is that different DFT methods give relative energies that differ by almost 600 kJ mol-1 for different protonation states. This is 4-30 times more than what is observed for other systems. The reason for this is that in some structures, the hydrogens bind to sulfide or carbide ions as protons, whereas in other structures they bind to the metals as hydride ions, changing the oxidation state of the metals, as well as the Fe-C, Fe-S and Fe-Fe distances. The energies correlate with the amount of Hartree-Fock exchange in the method, indicating a variation in the amount of static correlation in the structures. It is currently unclear which DFT method gives the best results for nitrogenase. We show that non-hybrid DFT functionals and TPSSh give the most accurate structures of the resting active site, whereas B3LYP and PBE0 give the best H2 dissociation energies. However, no DFT method indicates that a structure of E4 with two bridging hydride ions is lowest in energy, as spectroscopic experiments indicate.
固氮酶是唯一能够切断 N2 三键的酶,使氮可供其他生物使用。它在其活性部位含有一个复杂的 MoFe7S9C(柠檬酸)簇。已经提出了许多使用密度泛函理论(DFT)对固氮酶的计算研究,但它们没有达成任何共识——它们甚至不同意应该在哪里添加前四个质子,形成中心中间体 E4。我们表明,造成这种情况的主要原因是,不同的 DFT 方法给出的相对能量对于不同的质子化状态相差近 600 kJ mol-1。这比观察到的其他系统高出 4-30 倍。造成这种情况的原因是,在某些结构中,氢与硫或碳化物离子结合作为质子,而在其他结构中,氢与金属结合作为氢化物离子,改变了金属的氧化态,以及 Fe-C、Fe-S 和 Fe-Fe 距离。能量与方法中的 Hartree-Fock 交换量相关,表明结构中静态相关的量有所变化。目前尚不清楚哪种 DFT 方法对固氮酶最有效。我们表明,非杂化 DFT 泛函和 TPSSh 给出了最准确的休眠活性位点结构,而 B3LYP 和 PBE0 给出了最佳的 H2 离解能。然而,没有 DFT 方法表明具有两个桥接氢化物离子的 E4 结构的能量最低,正如光谱实验所表明的那样。