IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France.
INESC-ID / Instituto Superior Técnico - Universidade de Lisboa, Lisboa, Portugal.
J Theor Biol. 2019 Apr 7;466:39-63. doi: 10.1016/j.jtbi.2019.01.008. Epub 2019 Jan 15.
Bifurcation theory provides a powerful framework to analyze the dynamics of differential systems as a function of specific parameters. Abou-Jaoudé et al. (2009) introduced the concept of logical bifurcation diagrams, an analog of bifurcation diagrams for the logical modeling framework. In this work, we propose a formal definition of this concept. Since logical models are inherently discrete, we use the piecewise differential (PWLD) framework to introduce the underlying bifurcation parameters. Given a regulatory graph, a set of PWLD models is mapped to a set of logical models consistent with this graph, thereby linking continuous changes of bifurcation parameters to sequences of valuations of logical parameters. A logical bifurcation diagram corresponds then to a sequence of valuations of the logical parameters (with their associated set of attractors) consistent with at least one bifurcation diagram of the set of PWLD models. Necessary conditions on logical bifurcation diagrams in the general case, as well as a characterization of these diagrams in the Boolean case, exploiting a partial order between the logical parameters, are provided. We also propose a procedure to determine a logical bifurcation diagram of maximum length, starting from an initial valuation of the logical parameters, in the Boolean case. Finally, we apply our methodology to the analysis of a biological model of the p53-Mdm2 network.
分支理论为分析微分系统的动力学提供了一个强大的框架,其依赖于特定的参数。Abou-Jaoudé 等人(2009 年)引入了逻辑分支图的概念,这是逻辑建模框架的分支图的类比。在这项工作中,我们提出了这个概念的正式定义。由于逻辑模型本质上是离散的,我们使用分段微分(PWLD)框架来引入潜在的分支参数。给定一个调节图,一组 PWLD 模型被映射到一组与该图一致的逻辑模型,从而将分支参数的连续变化与逻辑参数的估值序列联系起来。因此,逻辑分支图对应于与一组 PWLD 模型的至少一个分支图一致的逻辑参数的估值序列(及其相关的吸引子集)。在一般情况下提供了逻辑分支图的必要条件,以及在布尔情况下利用逻辑参数之间的偏序对这些图进行的特征化。我们还提出了一种在布尔情况下,从逻辑参数的初始估值开始确定最大长度的逻辑分支图的过程。最后,我们将我们的方法应用于分析 p53-Mdm2 网络的生物学模型。