Suppr超能文献

优化的蛮力算法用于分析二进制神经网络模型的分岔。

Optimized brute-force algorithms for the bifurcation analysis of a binary neural network model.

机构信息

Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy.

Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08002 Barcelona, Spain.

出版信息

Phys Rev E. 2019 Jan;99(1-1):012316. doi: 10.1103/PhysRevE.99.012316.

Abstract

Bifurcation theory is a powerful tool for studying how the dynamics of a neural network model depends on its underlying neurophysiological parameters. However, bifurcation theory of neural networks has been developed mostly for mean-field limits of infinite-size spin-glass models, for finite-size dynamical systems whose units have a graded, continuous output, and for models with discrete-output neurons that evolve in continuous time. To allow progress on understanding the dynamics of some widely used classes of neural network models with discrete units and finite size, which could not be studied thoroughly with the previous methodology, here we introduced algorithms that perform a semianalytical bifurcation analysis of a finite-size firing-rate neural network model with binary firing rates and discrete-time evolution. In particular, we focus on the case of small networks composed of tens of neurons, to which existing statistical methods are not applicable. Our approach is based on a numerical brute-force search of the stationary and oscillatory solutions of the model, from which we derive analytical expressions of its bifurcation structure by means of the state-to-state transition probability matrix. Our algorithms determine how the network parameters affect the degree of multistability, the emergence and the period of the neural oscillations, and the formation of spontaneous symmetry breaking in the neural populations. While this technique can be applied to networks with arbitrary (generally asymmetric) connectivity matrices, in particular we introduce a highly efficient algorithm for the bifurcation analysis of sparse networks. We also provide some examples of the obtained bifurcation diagrams and a python implementation of the algorithms.

摘要

分支理论是研究神经网络模型的动力学如何依赖其潜在的神经生理参数的有力工具。然而,神经网络的分支理论主要是针对无限大小的自旋玻璃模型的平均场极限、具有渐变连续输出的有限大小动力系统以及具有离散输出神经元且在连续时间中演化的模型而发展的。为了能够理解具有离散单元和有限大小的一些广泛使用的神经网络模型的动力学,而这些模型不能用以前的方法学进行深入研究,我们在这里引入了一种算法,可以对具有二进制点火率和离散时间演化的有限大小点火率神经网络模型进行半解析分支分析。特别是,我们专注于由数十个神经元组成的小网络的情况,对于这种情况,现有的统计方法是不适用的。我们的方法基于对模型的静态和动态解的数值暴力搜索,从中我们通过状态到状态转移概率矩阵推导出其分支结构的解析表达式。我们的算法确定网络参数如何影响多稳定性程度、神经振荡的出现和周期,以及神经群体中自发对称性破缺的形成。虽然这种技术可以应用于具有任意(通常是非对称)连接矩阵的网络,但特别是我们引入了一种用于稀疏网络分支分析的高效算法。我们还提供了一些获得的分支图示例以及算法的 python 实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验