Chen Chao, Fan Lingfeng, Gao Ying, Qiu Shuang, Wei Wei, He Huiguang
Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, China.
Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
Cogn Neurodyn. 2024 Apr;18(2):357-370. doi: 10.1007/s11571-024-10073-5. Epub 2024 Feb 19.
Recognizing familiar faces holds great value in various fields such as medicine, criminal investigation, and lie detection. In this paper, we designed a Complex Trial Protocol-based familiar and unfamiliar face recognition experiment that using self-face information, and collected EEG data from 147 subjects. A novel neural network-based method, the EEG-based Face Recognition Model (EEG-FRM), is proposed in this paper for cross-subject familiar/unfamiliar face recognition, which combines a multi-scale convolutional classification network with the maximum probability mechanism to realize individual face recognition. The multi-scale convolutional neural network extracts temporal information and spatial features from the EEG data, the attention module and supervised contrastive learning module are employed to promote the classification performance. Experimental results on the dataset reveal that familiar face stimuli could evoke significant P300 responses, mainly concentrated in the parietal lobe and nearby regions. Our proposed model achieved impressive results, with a balanced accuracy of 85.64%, a true positive rate of 73.23%, and a false positive rate of 1.96% on the collected dataset, outperforming other compared methods. The experimental results demonstrate the effectiveness and superiority of our proposed model.
识别熟悉面孔在医学、刑事调查和测谎等各个领域都具有重要价值。在本文中,我们设计了一个基于复杂试验协议的熟悉和不熟悉面孔识别实验,该实验使用自身面部信息,并收集了147名受试者的脑电图(EEG)数据。本文提出了一种基于新型神经网络的方法——基于脑电图的人脸识别模型(EEG-FRM),用于跨受试者的熟悉/不熟悉面孔识别,该方法将多尺度卷积分类网络与最大概率机制相结合以实现个体人脸识别。多尺度卷积神经网络从EEG数据中提取时间信息和空间特征,采用注意力模块和监督对比学习模块来提升分类性能。数据集上的实验结果表明,熟悉面孔刺激能够引发显著的P300反应,主要集中在顶叶及附近区域。我们提出的模型取得了令人瞩目的结果,在收集的数据集上平衡准确率为85.64%,真阳性率为73.23%,假阳性率为1.96%,优于其他比较方法。实验结果证明了我们提出的模型的有效性和优越性。