Suppr超能文献

脑电图-面孔识别模型:一种基于神经网络的熟悉与不熟悉面孔脑电图识别方法。

EEG-FRM: a neural network based familiar and unfamiliar face EEG recognition method.

作者信息

Chen Chao, Fan Lingfeng, Gao Ying, Qiu Shuang, Wei Wei, He Huiguang

机构信息

Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, China.

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

出版信息

Cogn Neurodyn. 2024 Apr;18(2):357-370. doi: 10.1007/s11571-024-10073-5. Epub 2024 Feb 19.

Abstract

Recognizing familiar faces holds great value in various fields such as medicine, criminal investigation, and lie detection. In this paper, we designed a Complex Trial Protocol-based familiar and unfamiliar face recognition experiment that using self-face information, and collected EEG data from 147 subjects. A novel neural network-based method, the EEG-based Face Recognition Model (EEG-FRM), is proposed in this paper for cross-subject familiar/unfamiliar face recognition, which combines a multi-scale convolutional classification network with the maximum probability mechanism to realize individual face recognition. The multi-scale convolutional neural network extracts temporal information and spatial features from the EEG data, the attention module and supervised contrastive learning module are employed to promote the classification performance. Experimental results on the dataset reveal that familiar face stimuli could evoke significant P300 responses, mainly concentrated in the parietal lobe and nearby regions. Our proposed model achieved impressive results, with a balanced accuracy of 85.64%, a true positive rate of 73.23%, and a false positive rate of 1.96% on the collected dataset, outperforming other compared methods. The experimental results demonstrate the effectiveness and superiority of our proposed model.

摘要

识别熟悉面孔在医学、刑事调查和测谎等各个领域都具有重要价值。在本文中,我们设计了一个基于复杂试验协议的熟悉和不熟悉面孔识别实验,该实验使用自身面部信息,并收集了147名受试者的脑电图(EEG)数据。本文提出了一种基于新型神经网络的方法——基于脑电图的人脸识别模型(EEG-FRM),用于跨受试者的熟悉/不熟悉面孔识别,该方法将多尺度卷积分类网络与最大概率机制相结合以实现个体人脸识别。多尺度卷积神经网络从EEG数据中提取时间信息和空间特征,采用注意力模块和监督对比学习模块来提升分类性能。数据集上的实验结果表明,熟悉面孔刺激能够引发显著的P300反应,主要集中在顶叶及附近区域。我们提出的模型取得了令人瞩目的结果,在收集的数据集上平衡准确率为85.64%,真阳性率为73.23%,假阳性率为1.96%,优于其他比较方法。实验结果证明了我们提出的模型的有效性和优越性。

相似文献

1
EEG-FRM: a neural network based familiar and unfamiliar face EEG recognition method.
Cogn Neurodyn. 2024 Apr;18(2):357-370. doi: 10.1007/s11571-024-10073-5. Epub 2024 Feb 19.
2
Distinct neural processes for the perception of familiar versus unfamiliar faces along the visual hierarchy revealed by EEG.
Neuroimage. 2018 Nov 1;181:120-131. doi: 10.1016/j.neuroimage.2018.06.080. Epub 2018 Jun 30.
3
Attention-based 3D convolutional recurrent neural network model for multimodal emotion recognition.
Front Neurosci. 2024 Jan 10;17:1330077. doi: 10.3389/fnins.2023.1330077. eCollection 2023.
4
Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.
Comput Intell Neurosci. 2022 May 5;2022:8187009. doi: 10.1155/2022/8187009. eCollection 2022.
5
A Dynamic Multi-Scale Convolution Model for Face Recognition Using Event-Related Potentials.
Sensors (Basel). 2024 Jul 5;24(13):4368. doi: 10.3390/s24134368.
8
9
CATM: A Multi-Feature-Based Cross-Scale Attentional Convolutional EEG Emotion Recognition Model.
Sensors (Basel). 2024 Jul 25;24(15):4837. doi: 10.3390/s24154837.
10
Enhanced electroencephalogram signal classification: A hybrid convolutional neural network with attention-based feature selection.
Brain Res. 2025 Mar 15;1851:149484. doi: 10.1016/j.brainres.2025.149484. Epub 2025 Feb 2.

引用本文的文献

1
A Dynamic Multi-Scale Convolution Model for Face Recognition Using Event-Related Potentials.
Sensors (Basel). 2024 Jul 5;24(13):4368. doi: 10.3390/s24134368.

本文引用的文献

1
Continuous theta-burst stimulation modulates resting-state EEG microstates in healthy subjects.
Cogn Neurodyn. 2022 Jun;16(3):621-631. doi: 10.1007/s11571-021-09726-6. Epub 2021 Oct 16.
3
The N170 is Sensitive to Long-term (Personal) Familiarity of a Face Identity.
Neuroscience. 2021 Mar 15;458:244-255. doi: 10.1016/j.neuroscience.2020.12.036. Epub 2021 Jan 16.
4
EEG-Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2773-2782. doi: 10.1109/TNSRE.2020.3048106. Epub 2021 Jan 28.
5
The open EEGLAB portal Interface: High-Performance computing with EEGLAB.
Neuroimage. 2021 Jan 1;224:116778. doi: 10.1016/j.neuroimage.2020.116778. Epub 2020 Apr 11.
6
An efficient EEG based deceit identification test using wavelet packet transform and linear discriminant analysis.
J Neurosci Methods. 2019 Feb 15;314:31-40. doi: 10.1016/j.jneumeth.2019.01.007. Epub 2019 Jan 17.
8
EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
J Neural Eng. 2018 Oct;15(5):056013. doi: 10.1088/1741-2552/aace8c. Epub 2018 Jun 22.
9
Deep learning with convolutional neural networks for EEG decoding and visualization.
Hum Brain Mapp. 2017 Nov;38(11):5391-5420. doi: 10.1002/hbm.23730. Epub 2017 Aug 7.
10
Revisiting the earliest electrophysiological correlate of familiar face recognition.
Int J Psychophysiol. 2017 Oct;120:42-53. doi: 10.1016/j.ijpsycho.2017.07.001. Epub 2017 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验