Suppr超能文献

电纺纳米纤维的开发,实现了益生菌的高负载和长期存活。

Development of electrospun nanofibers that enable high loading and long-term viability of probiotics.

机构信息

Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.

Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.

出版信息

Eur J Pharm Biopharm. 2019 Mar;136:108-119. doi: 10.1016/j.ejpb.2019.01.013. Epub 2019 Jan 17.

Abstract

The interest in probiotics has grown in recent years due to increased awareness of the importance of microbiota for human health. We present the development of monolithic poly(ethylene oxide) and composite poly(ethylene oxide)/lyoprotectant nanofibers loaded with the probiotic Lactobacillus plantarum ATCC 8014. High loading was achieved for L. plantarum cells (up to 7.6 × 10 colony-forming unit/mg) that were either unmodified or expressing mCherry fluorescent protein. The initial concentration of L. plantarum in poly(ethylene oxide) solution was reported, for the first time, as the most critical parameter for its high viability after electrospinning, whereas the applied electric voltage and relative humidity during electrospinning did not vitally impact upon L. plantarum viability. The presence of amorphous lyoprotectant (especially trehalose) in the nanofibers promoted L. plantarum survival due to lyoprotectant interactions with L. plantarum cells. L. plantarum cells in nanofibers were stable over 24 weeks at low temperature, thereby achieving stability comparable with that in lyophilizates. The poly(ethylene oxide) nanofibers released almost all of the L. plantarum cells over 30 min, which will be adequate for their local administration. Our integrated approach enabled development of a promising nanodelivery system that provides high loading and long-term viability of L. plantarum in nanofibers, for local delivery to re-establish the microbiota balance e.g. in vagina.

摘要

近年来,由于人们越来越意识到微生物群对人类健康的重要性,益生菌的研究兴趣日益浓厚。我们介绍了载有益生菌植物乳杆菌 ATCC 8014 的整体式聚环氧乙烷和复合聚环氧乙烷/冷冻保护剂纳米纤维的开发。实现了对未修饰或表达 mCherry 荧光蛋白的植物乳杆菌细胞的高负载(高达 7.6×10 菌落形成单位/mg)。首次报道了植物乳杆菌在聚环氧乙烷溶液中的初始浓度是其在静电纺丝后高存活率的最关键参数,而静电纺丝过程中的施加电压和相对湿度对植物乳杆菌的存活率没有重要影响。纳米纤维中无定形冷冻保护剂(尤其是海藻糖)的存在通过冷冻保护剂与植物乳杆菌细胞的相互作用促进了植物乳杆菌的存活。在低温下,纳米纤维中的植物乳杆菌细胞在 24 周内保持稳定,从而实现了与冻干制剂相当的稳定性。聚环氧乙烷纳米纤维在 30 分钟内几乎释放了所有的植物乳杆菌细胞,这足以进行局部给药。我们的综合方法使我们能够开发出一种有前途的纳米给药系统,该系统能够在纳米纤维中实现植物乳杆菌的高负载和长期存活,用于局部给药以重新建立例如阴道中的微生物群平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验