Friedrich Patrick, Forkel Stephanie J, Amiez Céline, Balsters Joshua H, Coulon Olivier, Fan Lingzhong, Goulas Alexandros, Hadj-Bouziane Fadila, Hecht Erin E, Heuer Katja, Jiang Tianzi, Latzman Robert D, Liu Xiaojin, Loh Kep Kee, Patil Kaustubh R, Lopez-Persem Alizée, Procyk Emmanuel, Sallet Jerome, Toro Roberto, Vickery Sam, Weis Susanne, Wilson Charles R E, Xu Ting, Zerbi Valerio, Eickoff Simon B, Margulies Daniel S, Mars Rogier B, Thiebaut de Schotten Michel
Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany.
Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
Neuroimage. 2021 Mar;228:117685. doi: 10.1016/j.neuroimage.2020.117685. Epub 2021 Jan 5.
Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.
就我们目前对进化的理解而言,它在动物的祖先历史与对当前生态位的适应之间达成了微妙的平衡。物种之间的相似性通常被认为是从共同祖先那里继承而来的,而观察到的差异则被视为更近的进化结果。因此,比较物种可以为进化历史提供见解。比较神经影像学最近作为一个新的子学科出现,它利用磁共振成像(MRI)来识别不同物种大脑结构和功能的异同。虽然侵入性组织学和分子技术在空间分辨率上更具优势,但它们操作繁琐、需要在死后进行,而且通常仅限于特定物种。相比之下,神经影像学具有适用于所有物种的优势,并且能够对活体大脑和死后组织的结构与功能进行快速、全脑、可重复以及多模态的测量。在这篇综述中,我们总结了大脑比较解剖学和功能的当前技术水平,并汇集了在源自比较神经影像学的引人入胜的大脑进化新领域未来有待探索的主要科学问题。