Suppr超能文献

绘制人类和猕猴纹状体的跨物种连接组图谱。

Mapping cross-species connectome atlas of human and macaque striatum.

机构信息

Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau 999078, China.

Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China.

出版信息

Cereb Cortex. 2023 Jun 8;33(12):7518-7530. doi: 10.1093/cercor/bhad057.

Abstract

Cross-species connectome atlas (CCA) that can provide connectionally homogeneous and homologous brain nodes is essential and customized for cross-species neuroscience. However, existing CCAs were flawed in design and coarse-grained in results. In this study, a normative mapping framework of CCA was proposed and applied on human and macaque striatum. Specifically, all striatal voxels in the 2 species were mixed together and classified based on their represented and characterized feature of within-striatum resting-state functional connectivity, which was shared between the species. Six pairs of striatal parcels in these species were delineated in both hemispheres. Furthermore, this striatal parcellation was demonstrated by the best-matched whole-brain functional and structural connectivity between interspecies corresponding subregions. Besides, detailed interspecies differences in whole-brain multimodal connectivities and involved brain functions of these subregions were described to flesh out this CCA of striatum. In particular, this flexible and scalable mapping framework enables reliable construction of CCA of the whole brain, which would enable reliable findings in future cross-species research and advance our understandings into how the human brain works.

摘要

跨物种连接组图谱(CCA)对于跨物种神经科学来说至关重要,它可以提供连接同质且同源的大脑节点,并针对跨物种进行定制。然而,现有的 CCA 在设计上存在缺陷,结果也不够精细。在这项研究中,我们提出了一种规范性的 CCA 映射框架,并将其应用于人类和猕猴的纹状体。具体来说,我们将这两个物种的所有纹状体体素混合在一起,并根据它们在纹状体静息状态功能连接中所代表和特征化的特征进行分类,这些特征在两个物种之间是共享的。在这两个物种的每一半球中都划分出了 6 对纹状体区域。此外,我们通过在种间对应亚区之间进行最佳匹配的全脑功能和结构连接来验证这种纹状体分区。此外,我们还描述了这些亚区之间全脑多模态连接和涉及的大脑功能的详细种间差异,以充实这个纹状体 CCA。特别是,这种灵活且可扩展的映射框架能够可靠地构建整个大脑的 CCA,这将有助于在未来的跨物种研究中获得可靠的发现,并深入了解人类大脑的工作原理。

相似文献

6
Using connectomics for predictive assessment of brain parcellations.利用连接组学进行脑部分割的预测评估。
Neuroimage. 2021 Sep;238:118170. doi: 10.1016/j.neuroimage.2021.118170. Epub 2021 Jun 1.
10
Connectome-scale functional intrinsic connectivity networks in macaques.猴的连接组规模功能固有连接网络。
Neuroscience. 2017 Nov 19;364:1-14. doi: 10.1016/j.neuroscience.2017.08.022. Epub 2017 Aug 24.

引用本文的文献

本文引用的文献

4
A Common Space Approach to Comparative Neuroscience.比较神经科学的共同空间方法。
Annu Rev Neurosci. 2021 Jul 8;44:69-86. doi: 10.1146/annurev-neuro-100220-025942. Epub 2021 Feb 3.
7
The basal ganglia corticostriatal loops and conditional learning.基底神经节皮质纹状体环路与条件学习。
Rev Neurosci. 2020 Oct 28;32(2):181-190. doi: 10.1515/revneuro-2020-0047. Print 2021 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验