Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
Mathematics, Northwestern University, Evanston, IL, USA.
PLoS Comput Biol. 2019 Jan 22;15(1):e1006611. doi: 10.1371/journal.pcbi.1006611. eCollection 2019 Jan.
Much of the computational power of the mammalian brain arises from its extensive top-down projections. To enable neuron-specific information processing these projections have to be precisely targeted. How such a specific connectivity emerges and what functions it supports is still poorly understood. We addressed these questions in silico in the context of the profound structural plasticity of the olfactory system. At the core of this plasticity are the granule cells of the olfactory bulb, which integrate bottom-up sensory inputs and top-down inputs delivered by vast top-down projections from cortical and other brain areas. We developed a biophysically supported computational model for the rewiring of the top-down projections and the intra-bulbar network via adult neurogenesis. The model captures various previous physiological and behavioral observations and makes specific predictions for the cortico-bulbar network connectivity that is learned by odor exposure and environmental contexts. Specifically, it predicts that-after learning-the granule-cell receptive fields with respect to sensory and with respect to cortical inputs are highly correlated. This enables cortical cells that respond to a learned odor to enact disynaptic inhibitory control specifically of bulbar principal cells that respond to that odor. For this the reciprocal nature of the granule cell synapses with the principal cells is essential. Functionally, the model predicts context-enhanced stimulus discrimination in cluttered environments ('olfactory cocktail parties') and the ability of the system to adapt to its tasks by rapidly switching between different odor-processing modes. These predictions are experimentally testable. At the same time they provide guidance for future experiments aimed at unraveling the cortico-bulbar connectivity.
哺乳动物大脑的大部分计算能力都来自其广泛的自上而下的投射。为了实现神经元特异性信息处理,这些投射必须精确靶向。这种特定的连接是如何产生的,它支持什么功能,仍然知之甚少。我们在嗅觉系统的深刻结构可塑性的背景下,在计算机中对这些问题进行了研究。这种可塑性的核心是嗅球的颗粒细胞,它整合了来自皮质和其他大脑区域的大量自上而下投射的自上而下输入和自下而上的感觉输入。我们开发了一种具有生物物理支持的计算模型,用于通过成年神经发生对自上而下的投射和内嗅球网络进行重新布线。该模型捕获了各种以前的生理和行为观察结果,并对通过气味暴露和环境上下文学习的皮质-嗅球网络连接做出了具体预测。具体来说,它预测在学习后,颗粒细胞的感受野在感觉和皮质输入方面高度相关。这使得对学习气味有反应的皮质细胞能够对特定的气味产生抑制性控制,具体来说,是对对该气味有反应的嗅球主细胞产生抑制性控制。为此,颗粒细胞与主细胞之间的突触的相互作用是必不可少的。从功能上讲,该模型预测了在杂乱环境(“嗅觉鸡尾酒会”)中增强的上下文刺激辨别能力,以及系统通过在不同的气味处理模式之间快速切换来适应其任务的能力。这些预测是可以通过实验验证的。同时,它们为未来旨在揭示皮质-嗅球连接的实验提供了指导。