Suppr超能文献

工程策略通过减少呼吸碳损失来提高作物生产力。

Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss.

机构信息

AIR Worldwide Corporation, Boston, Massachusetts 02116

Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany

出版信息

Plant Cell. 2019 Feb;31(2):297-314. doi: 10.1105/tpc.18.00743. Epub 2019 Jan 22.

Abstract

Roughly half the carbon that crop plants fix by photosynthesis is subsequently lost by respiration. Nonessential respiratory activity leading to unnecessary CO release is unlikely to have been minimized by natural selection or crop breeding, and cutting this large loss could complement and reinforce the currently dominant yield-enhancement strategy of increasing carbon fixation. Until now, however, respiratory carbon losses have generally been overlooked by metabolic engineers and synthetic biologists because specific target genes have been elusive. We argue that recent advances are at last pinpointing individual enzyme and transporter genes that can be engineered to (1) slow unnecessary protein turnover, (2) replace, relocate, or reschedule metabolic activities, (3) suppress futile cycles, and (4) make ion transport more efficient, all of which can reduce respiratory costs. We identify a set of engineering strategies to reduce respiratory carbon loss that are now feasible and model how implementing these strategies singly or in tandem could lead to substantial gains in crop productivity.

摘要

作物光合作用固定的碳大约有一半随后通过呼吸作用而损失。非必需的呼吸作用导致不必要的 CO2 释放,这不太可能是自然选择或作物培育所最小化的,减少这种大量的损失可以补充和加强目前通过增加碳固定来提高产量的主导策略。然而,到目前为止,代谢工程师和合成生物学家通常忽略了呼吸碳损失,因为特定的靶基因一直难以捉摸。我们认为,最近的进展终于确定了可以被工程化的单个酶和转运蛋白基因,这些基因可以被工程化来:(1)减缓不必要的蛋白质周转;(2)替换、重新定位或重新安排代谢活动;(3)抑制无效循环;以及(4)使离子运输更有效率,所有这些都可以降低呼吸成本。我们确定了一组减少呼吸碳损失的工程策略,这些策略现在是可行的,并模拟了单独或联合实施这些策略如何导致作物生产力的大幅提高。

相似文献

6
Carbon assimilation in crops at high temperatures.高温条件下作物的碳同化。
Plant Cell Environ. 2019 Oct;42(10):2750-2758. doi: 10.1111/pce.13572. Epub 2019 Jul 29.
7
Strategies for engineering C(4) photosynthesis.C(4) 光合作用的工程策略。
J Plant Physiol. 2013 Mar 1;170(4):378-88. doi: 10.1016/j.jplph.2012.10.011. Epub 2012 Dec 13.
10

引用本文的文献

1
Importance of the leaf respiratory quotient.叶片呼吸商的重要性。
Physiol Plant. 2025 Mar-Apr;177(2):e70235. doi: 10.1111/ppl.70235.
8
Plant Biosystems Design Research Roadmap 1.0.植物生物系统设计研究路线图1.0
Biodes Res. 2020 Dec 5;2020:8051764. doi: 10.34133/2020/8051764. eCollection 2020.

本文引用的文献

3
Redesigning thiamin synthesis: Prospects and potential payoffs.重新设计硫胺素合成:前景与潜在收益。
Plant Sci. 2018 Aug;273:92-99. doi: 10.1016/j.plantsci.2018.01.019. Epub 2018 Feb 5.
4
Engineering synthetic regulatory circuits in plants.在植物中工程合成调控回路。
Plant Sci. 2018 Aug;273:13-22. doi: 10.1016/j.plantsci.2018.04.005. Epub 2018 Apr 11.
5
Root Ideotype Influences Nitrogen Transport and Assimilation in Maize.根系理想型影响玉米的氮素转运与同化。
Front Plant Sci. 2018 Apr 24;9:531. doi: 10.3389/fpls.2018.00531. eCollection 2018.
8
Nitrate Transport, Signaling, and Use Efficiency.硝酸盐运输、信号转导和利用效率。
Annu Rev Plant Biol. 2018 Apr 29;69:85-122. doi: 10.1146/annurev-arplant-042817-040056. Epub 2018 Mar 23.
10
Maillard Proteomics: Opening New Pages.美拉德蛋白质组学:开辟新篇章。
Int J Mol Sci. 2017 Dec 12;18(12):2677. doi: 10.3390/ijms18122677.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验