Department of Microbiology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, 04318 Leipzig, Germany.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2259-2264. doi: 10.1073/pnas.1819636116. Epub 2019 Jan 23.
Reversible biological electron transfer usually occurs between redox couples at standard redox potentials ranging from +0.8 to -0.5 V. Dearomatizing benzoyl-CoA reductases (BCRs), key enzymes of the globally relevant microbial degradation of aromatic compounds at anoxic sites, catalyze a biological Birch reduction beyond the negative limit of this redox window. The structurally characterized BamBC subunits of class II BCRs accomplish benzene ring reduction at an active-site tungsten cofactor; however, the mechanism and components involved in the energetic coupling of endergonic benzene ring reduction have remained hypothetical. We present a 1-MDa, membrane-associated, Bam[(BC)DEFGHI] complex from the anaerobic bacterium harboring 4 tungsten, 4 zinc, 2 selenocysteines, 6 FAD, and >50 FeS cofactors. The results suggest that class II BCRs catalyze electron transfer to the aromatic ring, yielding a cyclic 1,5-dienoyl-CoA via two flavin-based electron bifurcation events. This work expands our knowledge of energetic couplings in biology by high-molecular-mass electron bifurcating machineries.
可逆生物电子转移通常发生在标准氧化还原电位在+0.8 到-0.5 V 之间的氧化还原对之间。去芳构化的苯甲酰辅酶 A 还原酶 (BCRs) 是缺氧环境中芳香族化合物微生物降解的关键酶,可催化生物 Birch 还原反应,超出该氧化还原窗口的负极限。结构表征的 II 类 BCRs 的 BamBC 亚基在活性部位钨辅因子上催化苯环还原;然而,与内吸苯环还原的能量偶联相关的机制和组件仍然是假设的。我们从厌氧细菌中提出了一个 1 MDa 的膜相关的 Bam[(BC)DEFGHI]复合物,该细菌含有 4 个钨、4 个锌、2 个硒代半胱氨酸、6 个 FAD 和 >50 个 FeS 辅因子。结果表明,II 类 BCRs 通过两个黄素基电子分叉事件将电子转移到芳环上,生成环状 1,5-二烯酰辅酶 A。这项工作通过高分子质量电子分叉机械扩展了我们对生物学中能量偶联的认识。