Suppr超能文献

涉及苯环还原超出生物氧化还原窗的一兆道尔顿金属酶复合物。

One-megadalton metalloenzyme complex in involved in benzene ring reduction beyond the biological redox window.

机构信息

Department of Microbiology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.

Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, 04318 Leipzig, Germany.

出版信息

Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2259-2264. doi: 10.1073/pnas.1819636116. Epub 2019 Jan 23.

Abstract

Reversible biological electron transfer usually occurs between redox couples at standard redox potentials ranging from +0.8 to -0.5 V. Dearomatizing benzoyl-CoA reductases (BCRs), key enzymes of the globally relevant microbial degradation of aromatic compounds at anoxic sites, catalyze a biological Birch reduction beyond the negative limit of this redox window. The structurally characterized BamBC subunits of class II BCRs accomplish benzene ring reduction at an active-site tungsten cofactor; however, the mechanism and components involved in the energetic coupling of endergonic benzene ring reduction have remained hypothetical. We present a 1-MDa, membrane-associated, Bam[(BC)DEFGHI] complex from the anaerobic bacterium harboring 4 tungsten, 4 zinc, 2 selenocysteines, 6 FAD, and >50 FeS cofactors. The results suggest that class II BCRs catalyze electron transfer to the aromatic ring, yielding a cyclic 1,5-dienoyl-CoA via two flavin-based electron bifurcation events. This work expands our knowledge of energetic couplings in biology by high-molecular-mass electron bifurcating machineries.

摘要

可逆生物电子转移通常发生在标准氧化还原电位在+0.8 到-0.5 V 之间的氧化还原对之间。去芳构化的苯甲酰辅酶 A 还原酶 (BCRs) 是缺氧环境中芳香族化合物微生物降解的关键酶,可催化生物 Birch 还原反应,超出该氧化还原窗口的负极限。结构表征的 II 类 BCRs 的 BamBC 亚基在活性部位钨辅因子上催化苯环还原;然而,与内吸苯环还原的能量偶联相关的机制和组件仍然是假设的。我们从厌氧细菌中提出了一个 1 MDa 的膜相关的 Bam[(BC)DEFGHI]复合物,该细菌含有 4 个钨、4 个锌、2 个硒代半胱氨酸、6 个 FAD 和 >50 个 FeS 辅因子。结果表明,II 类 BCRs 通过两个黄素基电子分叉事件将电子转移到芳环上,生成环状 1,5-二烯酰辅酶 A。这项工作通过高分子质量电子分叉机械扩展了我们对生物学中能量偶联的认识。

相似文献

4
Structural basis of enzymatic benzene ring reduction.酶促苯环还原的结构基础。
Nat Chem Biol. 2015 Aug;11(8):586-91. doi: 10.1038/nchembio.1849. Epub 2015 Jun 29.
6

引用本文的文献

7
Correlated particle transport enables biological free energy transduction.相关粒子输运实现了生物自由能转导。
Biophys J. 2023 May 16;122(10):1762-1771. doi: 10.1016/j.bpj.2023.04.009. Epub 2023 Apr 12.
8
Strategies for the Biodegradation of Polyfluorinated Compounds.多氟化合物的生物降解策略。
Microorganisms. 2022 Aug 17;10(8):1664. doi: 10.3390/microorganisms10081664.
10
A Third Way of Energy Conservation in Acetogenic Bacteria.产乙酸菌中的第三种节能途径。
Microbiol Spectr. 2022 Aug 31;10(4):e0138522. doi: 10.1128/spectrum.01385-22. Epub 2022 Jun 14.

本文引用的文献

1
A new era for electron bifurcation.电子分裂的新纪元。
Curr Opin Chem Biol. 2018 Dec;47:32-38. doi: 10.1016/j.cbpa.2018.07.026. Epub 2018 Aug 1.
2
On the Natural History of Flavin-Based Electron Bifurcation.基于黄素的电子分叉的自然史
Front Microbiol. 2018 Jul 3;9:1357. doi: 10.3389/fmicb.2018.01357. eCollection 2018.
6
Electron Bifurcation: A Long-Hidden Energy-Coupling Mechanism.电子分叉:一种长期隐藏的能量耦合机制。
Annu Rev Microbiol. 2018 Sep 8;72:331-353. doi: 10.1146/annurev-micro-090816-093440. Epub 2018 Jun 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验