Life Sciences Institute, ‡Department of Medicinal Chemistry, §Cancer Biology Graduate Program, ⊥Department of Chemistry, and ∥Department of Microbiology & Immunology, University of Michigan , Ann Arbor, Michigan 48109, United States.
J Am Chem Soc. 2017 Sep 27;139(38):13450-13455. doi: 10.1021/jacs.7b06432. Epub 2017 Sep 19.
Polyketide biosynthetic pathways have been engineered to generate natural product analogs for over two decades. However, manipulation of modular type I polyketide synthases (PKSs) to make unnatural metabolites commonly results in attenuated yields or entirely inactive pathways, and the mechanistic basis for compromised production is rarely elucidated since rate-limiting or inactive domain(s) remain unidentified. Accordingly, we synthesized and assayed a series of modified pikromycin (Pik) pentaketides that mimic early pathway engineering to probe the substrate tolerance of the PikAIII-TE module in vitro. Truncated pentaketides were processed with varying efficiencies to corresponding macrolactones, while pentaketides with epimerized chiral centers were poorly processed by PikAIII-TE and failed to generate 12-membered ring products. Isolation and identification of extended but prematurely offloaded shunt products suggested that the Pik thioesterase (TE) domain has limited substrate flexibility and functions as a gatekeeper in the processing of unnatural substrates. Synthesis of an analogous hexaketide with an epimerized nucleophilic hydroxyl group allowed for direct evaluation of the substrate stereoselectivity of the excised TE domain. The epimerized hexaketide failed to undergo cyclization and was exclusively hydrolyzed, confirming the TE domain as a key catalytic bottleneck. In an accompanying paper , we engineer the standalone Pik thioesterase to yield a thioesterase (TE) and module (PikAIII-TE) that display gain-of-function processing of substrates with inverted hydroxyl groups.
多酮生物合成途径已经被工程改造了二十多年,以产生天然产物类似物。然而,对模块化 I 型聚酮合酶 (PKS) 的操纵,以产生非天然代谢物,通常会导致产量降低或完全失活的途径,而且由于限速或失活结构域仍未确定,对于生产受损的机制基础很少被阐明。因此,我们合成并测定了一系列模拟早期途径工程的修饰 pikromycin (Pik) 五酮,以体外探测 PikAIII-TE 模块的底物耐受性。截断的五酮以不同的效率加工成相应的大环内酯,而具有手性中心表异构的五酮则被 PikAIII-TE 加工不良,无法生成 12 元环产物。延伸但过早卸载的旁路产物的分离和鉴定表明,Pik 硫酯酶 (TE) 结构域具有有限的底物灵活性,并且在非天然底物的加工中充当守门员。具有表异构亲核羟基的类似六酮的合成允许直接评估切除的 TE 结构域的底物立体选择性。表异构六酮未能进行环化,并且仅被水解,这证实了 TE 结构域是一个关键的催化瓶颈。在一篇相关的论文中,我们对独立的 Pik 硫酯酶进行了工程改造,以产生一种硫酯酶 (TE) 和模块 (PikAIII-TE),它们对具有倒置羟基的底物具有功能增强的加工能力。