文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用3D区域提议网络在CT图像中进行高效多器官定位

Efficient Multiple Organ Localization in CT Image using 3D Region Proposal Network.

作者信息

Xu Xuanang, Zhou Fugen, Liu Bo, Fu Dongshan, Bai Xiangzhi

出版信息

IEEE Trans Med Imaging. 2019 Jan 24. doi: 10.1109/TMI.2019.2894854.


DOI:10.1109/TMI.2019.2894854
PMID:30676952
Abstract

Organ localization is an essential preprocessing step for many medical image analysis tasks such as image registration, organ segmentation and lesion detection. In this work, we propose an efficient method for multiple organ localization in CT image using 3D region proposal network. Compared with other convolutional neural network based methods that successively detect the target organs in all slices to assemble the final 3D bounding box, our method is fully implemented in 3D manner, thus can take full advantages of the spatial context information in CT image to perform efficient organ localization with only one prediction. We also propose a novel backbone network architecture that generates high-resolution feature maps to further improve the localization performance on small organs. We evaluate our method on two clinical datasets, where 11 body organs and 12 head organs (or anatomical structures) are included. As our results shown, the proposed method achieves higher detection precision and localization accuracy than the current state-of-theart methods with approximate 4 to 18 times faster processing speed. Additionally, we have established a public dataset dedicated for organ localization on http://dx. doi.org/10.21227/df8g-pq27. The full implementation of the proposed method have also been made publicly available on https://github.com/superxuang/caffe_3d_faster_rcnn.

摘要

器官定位是许多医学图像分析任务(如图像配准、器官分割和病变检测)必不可少的预处理步骤。在这项工作中,我们提出了一种使用三维区域建议网络在CT图像中进行多器官定位的有效方法。与其他基于卷积神经网络的方法不同,这些方法通过依次检测所有切片中的目标器官来组装最终的三维边界框,我们的方法以三维方式完全实现,因此可以充分利用CT图像中的空间上下文信息,仅通过一次预测就能高效地进行器官定位。我们还提出了一种新颖的主干网络架构,该架构生成高分辨率特征图,以进一步提高对小器官的定位性能。我们在两个临床数据集上评估了我们的方法,其中包括11个身体器官和12个头器官(或解剖结构)。如我们的结果所示,所提出的方法比当前的最先进方法具有更高的检测精度和定位准确性,处理速度快约4到18倍。此外,我们在http://dx.doi.org/10.21227/df8g-pq27上建立了一个专门用于器官定位的公共数据集。所提出方法的完整实现也已在https://github.com/superxuang/caffe_3d_faster_rcnn上公开提供。

相似文献

[1]
Efficient Multiple Organ Localization in CT Image using 3D Region Proposal Network.

IEEE Trans Med Imaging. 2019-1-24

[2]
Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans.

Phys Med Biol. 2018-4-5

[3]
Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry.

Med Image Anal. 2021-5

[4]
An Anatomy-based Iteratively Searching Convolutional Neural Network for Organ Localization in CT images.

Proc SPIE Int Soc Opt Eng. 2022

[5]
Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.

Med Image Anal. 2018-2-1

[6]
ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images.

Med Phys. 2020-7

[7]
Towards context-sensitive CT imaging - organ-specific image formation for single (SECT) and dual energy computed tomography (DECT).

Med Phys. 2018-8-31

[8]
Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network.

Med Phys. 2022-8

[9]
Evaluation of multislice inputs to convolutional neural networks for medical image segmentation.

Med Phys. 2020-12

[10]
Surface-GCN: Learning interaction experience for organ segmentation in 3D medical images.

Med Phys. 2023-8

引用本文的文献

[1]
Federated learning-based CT liver tumor detection using a teacher‒student SANet with semisupervised learning.

BMC Med Imaging. 2025-7-1

[2]
A comprehensive and easy-to-use multi-domain multi-task medical imaging meta-dataset.

Sci Data. 2025-4-19

[3]
Rethinking model prototyping through the MedMNIST+ dataset collection.

Sci Rep. 2025-3-5

[4]
Deep learning-based object detection algorithms in medical imaging: Systematic review.

Heliyon. 2024-12-11

[5]
Technical Note: Neural Network Architectures for Self-Supervised Body Part Regression Models with Automated Localized Segmentation Application.

J Imaging Inform Med. 2025-8

[6]
Depth-Aware Networks for Multi-Organ Lesion Detection in Chest CT Scans.

Bioengineering (Basel). 2024-10-3

[7]
Explainable rotation-invariant self-supervised representation learning.

MethodsX. 2024-9-14

[8]
Artificial Intelligence in Pancreatic Image Analysis: A Review.

Sensors (Basel). 2024-7-22

[9]
Multi-sample -mixup: richer, more realistic synthetic samples from a -series interpolant.

J Big Data. 2024

[10]
An Anatomy-based Iteratively Searching Convolutional Neural Network for Organ Localization in CT images.

Proc SPIE Int Soc Opt Eng. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索