Xu Xuanang, Zhou Fugen, Liu Bo, Fu Dongshan, Bai Xiangzhi
IEEE Trans Med Imaging. 2019 Jan 24. doi: 10.1109/TMI.2019.2894854.
Organ localization is an essential preprocessing step for many medical image analysis tasks such as image registration, organ segmentation and lesion detection. In this work, we propose an efficient method for multiple organ localization in CT image using 3D region proposal network. Compared with other convolutional neural network based methods that successively detect the target organs in all slices to assemble the final 3D bounding box, our method is fully implemented in 3D manner, thus can take full advantages of the spatial context information in CT image to perform efficient organ localization with only one prediction. We also propose a novel backbone network architecture that generates high-resolution feature maps to further improve the localization performance on small organs. We evaluate our method on two clinical datasets, where 11 body organs and 12 head organs (or anatomical structures) are included. As our results shown, the proposed method achieves higher detection precision and localization accuracy than the current state-of-theart methods with approximate 4 to 18 times faster processing speed. Additionally, we have established a public dataset dedicated for organ localization on http://dx. doi.org/10.21227/df8g-pq27. The full implementation of the proposed method have also been made publicly available on https://github.com/superxuang/caffe_3d_faster_rcnn.
器官定位是许多医学图像分析任务(如图像配准、器官分割和病变检测)必不可少的预处理步骤。在这项工作中,我们提出了一种使用三维区域建议网络在CT图像中进行多器官定位的有效方法。与其他基于卷积神经网络的方法不同,这些方法通过依次检测所有切片中的目标器官来组装最终的三维边界框,我们的方法以三维方式完全实现,因此可以充分利用CT图像中的空间上下文信息,仅通过一次预测就能高效地进行器官定位。我们还提出了一种新颖的主干网络架构,该架构生成高分辨率特征图,以进一步提高对小器官的定位性能。我们在两个临床数据集上评估了我们的方法,其中包括11个身体器官和12个头器官(或解剖结构)。如我们的结果所示,所提出的方法比当前的最先进方法具有更高的检测精度和定位准确性,处理速度快约4到18倍。此外,我们在http://dx.doi.org/10.21227/df8g-pq27上建立了一个专门用于器官定位的公共数据集。所提出方法的完整实现也已在https://github.com/superxuang/caffe_3d_faster_rcnn上公开提供。
IEEE Trans Med Imaging. 2019-1-24
Proc SPIE Int Soc Opt Eng. 2022
Bioengineering (Basel). 2024-10-3
MethodsX. 2024-9-14
Sensors (Basel). 2024-7-22
Proc SPIE Int Soc Opt Eng. 2022