Suppr超能文献

用于胸部CT扫描中多器官病变检测的深度感知网络

Depth-Aware Networks for Multi-Organ Lesion Detection in Chest CT Scans.

作者信息

Zhang Han, Chung Albert C S

机构信息

Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

出版信息

Bioengineering (Basel). 2024 Oct 3;11(10):998. doi: 10.3390/bioengineering11100998.

Abstract

Computer tomography (CT) scans' capabilities in detecting lesions have been increasing remarkably in the past decades. In this paper, we propose a multi-organ lesion detection (MOLD) approach to better address real-life chest-related clinical needs. MOLD is a challenging task, especially within a large, high resolution image volume, due to various types of background information interference and large differences in lesion sizes. Furthermore, the appearance similarity between lesions and other normal tissues demands more discriminative features. In order to overcome these challenges, we introduce depth-aware (DA) and skipped-layer hierarchical training (SHT) mechanisms with the novel Dense 3D context enhanced (Dense 3DCE) lesion detection model. The novel Dense 3DCE framework considers the shallow, medium, and deep-level features together comprehensively. In addition, equipped with our SHT scheme, the backpropagation process can now be supervised under precise control, while the DA scheme can effectively incorporate depth domain knowledge into the scheme. Extensive experiments have been carried out on a publicly available, widely used DeepLesion dataset, and the results prove the effectiveness of our DA-SHT Dense 3DCE network in the MOLD task.

摘要

在过去几十年中,计算机断层扫描(CT)在检测病变方面的能力显著提高。在本文中,我们提出了一种多器官病变检测(MOLD)方法,以更好地满足与胸部相关的实际临床需求。MOLD是一项具有挑战性的任务,特别是在大型高分辨率图像中,因为存在各种类型的背景信息干扰以及病变大小差异很大。此外,病变与其他正常组织之间的外观相似性需要更具判别力的特征。为了克服这些挑战,我们引入了深度感知(DA)和跳层分层训练(SHT)机制,并结合了新颖的密集三维上下文增强(Dense 3DCE)病变检测模型。新颖的Dense 3DCE框架综合考虑了浅层、中层和深层特征。此外,配备我们的SHT方案,反向传播过程现在可以在精确控制下进行监督,而DA方案可以有效地将深度域知识纳入该方案。我们在公开可用且广泛使用的DeepLesion数据集上进行了大量实验,结果证明了我们的DA-SHT Dense 3DCE网络在MOLD任务中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3498/11503988/25e38934c19c/bioengineering-11-00998-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验