Suppr超能文献

通过MedMNIST+数据集收集重新思考模型原型设计。

Rethinking model prototyping through the MedMNIST+ dataset collection.

作者信息

Doerrich Sebastian, Di Salvo Francesco, Brockmann Julius, Ledig Christian

机构信息

University of Bamberg, xAILab Bamberg, Bamberg, 96047, Germany.

Ludwig Maximilian University of Munich, Munich, 80539, Germany.

出版信息

Sci Rep. 2025 Mar 5;15(1):7669. doi: 10.1038/s41598-025-92156-9.

Abstract

The integration of deep learning based systems in clinical practice is often impeded by challenges rooted in limited and heterogeneous medical datasets. In addition, the field has increasingly prioritized marginal performance gains on a few, narrowly scoped benchmarks over clinical applicability, slowing down meaningful algorithmic progress. This trend often results in excessive fine-tuning of existing methods on selected datasets rather than fostering clinically relevant innovations. In response, this work introduces a comprehensive benchmark for the MedMNIST+ dataset collection, designed to diversify the evaluation landscape across several imaging modalities, anatomical regions, classification tasks and sample sizes. We systematically reassess commonly used Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) architectures across distinct medical datasets, training methodologies, and input resolutions to validate and refine existing assumptions about model effectiveness and development. Our findings suggest that computationally efficient training schemes and modern foundation models offer viable alternatives to costly end-to-end training. Additionally, we observe that higher image resolutions do not consistently improve performance beyond a certain threshold. This highlights the potential benefits of using lower resolutions, particularly in prototyping stages, to reduce computational demands without sacrificing accuracy. Notably, our analysis reaffirms the competitiveness of CNNs compared to ViTs, emphasizing the importance of comprehending the intrinsic capabilities of different architectures. Finally, by establishing a standardized evaluation framework, we aim to enhance transparency, reproducibility, and comparability within the MedMNIST+ dataset collection as well as future research. Code is available at (https://github.com/sdoerrich97/rethinking-model-prototyping-MedMNISTPlus).

摘要

基于深度学习的系统在临床实践中的整合常常受到源于有限且异质的医学数据集的挑战的阻碍。此外,该领域越来越优先考虑在少数范围狭窄的基准上获得边际性能提升,而不是临床适用性,这减缓了有意义的算法进展。这种趋势往往导致在选定数据集上对现有方法进行过度微调,而不是促进与临床相关的创新。作为回应,这项工作引入了一个针对MedMNIST+数据集收集的综合基准,旨在使跨多种成像模态、解剖区域、分类任务和样本大小的评估格局多样化。我们系统地重新评估了不同医学数据集、训练方法和输入分辨率下常用的卷积神经网络(CNN)和视觉Transformer(ViT)架构,以验证和完善关于模型有效性和开发的现有假设。我们的研究结果表明,计算效率高的训练方案和现代基础模型为昂贵的端到端训练提供了可行的替代方案。此外,我们观察到,超过一定阈值后,更高的图像分辨率并不能持续提高性能。这凸显了使用较低分辨率的潜在好处,特别是在原型阶段,以在不牺牲准确性的情况下降低计算需求。值得注意的是,我们的分析重申了CNN与ViT相比的竞争力,强调了理解不同架构内在能力的重要性。最后,通过建立一个标准化的评估框架,我们旨在提高MedMNIST+数据集收集以及未来研究中的透明度、可重复性和可比性。代码可在(https://github.com/sdoerrich97/rethinking-model-prototyping-MedMNISTPlus)获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b8/11883007/4107d4987604/41598_2025_92156_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验