Centre of Nanotechnology, IIT Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, IIT Roorkee, India.
University of Petroleum and Energy Studies, Dehradun, India.
Mater Sci Eng C Mater Biol Appl. 2019 Apr;97:539-551. doi: 10.1016/j.msec.2018.12.065. Epub 2018 Dec 21.
Carbon nanomaterials, such as graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) are potential candidates in a large number of biomedical applications. The present study investigates the effect of the difference in morphology of these materials on neural cell regeneration on a biodegradable scaffold. Electrical conductivities of all the hybrid scaffolds are found to be in between that of MWCNT/chitosan scaffold (highest-conductivity) and GNP/chitosan scaffold (lowest-conductivity). While, hybrid scaffolds show improvement in elastic modulus and ultimate tensile strength over MWCNT/chitosan and GNP/chitosan scaffolds. The protein adsorption isotherms of bovine serum albumin (BSA) show greater equilibrium constant (Keq) on GNP/chitosan composites as compared to MWCNT/chitosan composites, proving more potential for cell adhesion in the former. Interactions of HT-22 hippocampal neurons with MWCNT/chitosan, GNP/chitosan and various MWCNT/GNP hybrid chitosan matrices prove cytocompatibility. The neurons acquire elongated geometry on the MWCNT/chitosan scaffold, while GNP reinforcement drives the neurons to spread cellular processes radially.
碳纳米材料,如石墨烯纳米片(GNPs)和多壁碳纳米管(MWCNTs),在大量生物医学应用中是潜在的候选材料。本研究探讨了这些材料形态差异对可生物降解支架上神经细胞再生的影响。所有杂交支架的电导率都发现介于 MWCNT/壳聚糖支架(最高电导率)和 GNP/壳聚糖支架(最低电导率)之间。而,与 MWCNT/壳聚糖和 GNP/壳聚糖支架相比,杂交支架在弹性模量和极限拉伸强度方面均有所提高。牛血清白蛋白(BSA)的蛋白质吸附等温线表明,与 MWCNT/壳聚糖复合材料相比,GNP/壳聚糖复合材料的平衡常数(Keq)更大,证明前者更有利于细胞黏附。HT-22 海马神经元与 MWCNT/壳聚糖、GNP/壳聚糖和各种 MWCNT/GNP 杂化壳聚糖基质的相互作用证明了细胞相容性。神经元在 MWCNT/壳聚糖支架上获得了拉长的几何形状,而 GNP 的增强作用则促使神经元将细胞过程向径向展开。