Suppr超能文献

内耳及相关组织中表观遗传修饰的研究方法。

Approaches for the study of epigenetic modifications in the inner ear and related tissues.

机构信息

Departments of Neurobiology and Anatomical Sciences, and of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA.

Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA.

出版信息

Hear Res. 2019 May;376:69-85. doi: 10.1016/j.heares.2019.01.007. Epub 2019 Jan 12.

Abstract

DNA methylation and histone modifications such as methylation, acetylation, and phosphorylation, are two types of epigenetic modifications that alter gene expression. These additions to DNA regulatory elements or to the tails of histones can be inherited or can also occur de novo. Since epigenetic modifications can have significant effects on various processes at both the cellular and organismal level, there has been a rapid increase in research on this topic throughout all fields of biology in recent years. However, epigenetic research is relativity new for the inner ear field, likely due to the limited number of cells present and their quiescent nature. Here, we provide an overview of methods used to detect DNA methylation and histone modifications with a focus on those that have been validated for use with limited cell numbers and a discussion of the strengths and limitations for each. We also provide examples for how these methods have been used to investigate the epigenetic landscape in the inner ear and related tissues.

摘要

DNA 甲基化和组蛋白修饰(如甲基化、乙酰化和磷酸化)是两种类型的表观遗传修饰,可改变基因表达。这些 DNA 调控元件或组蛋白尾部的添加可以遗传,也可以从头发生。由于表观遗传修饰可以对细胞和机体水平的各种过程产生重大影响,近年来,生物学各个领域对该主题的研究迅速增加。然而,对于内耳领域来说,表观遗传学研究相对较新,可能是因为内耳细胞数量有限且处于静止状态。在这里,我们提供了用于检测 DNA 甲基化和组蛋白修饰的方法概述,重点介绍了那些已经过验证可用于有限细胞数量的方法,并讨论了每种方法的优缺点。我们还提供了这些方法如何用于研究内耳和相关组织中的表观遗传景观的示例。

相似文献

1
Approaches for the study of epigenetic modifications in the inner ear and related tissues.
Hear Res. 2019 May;376:69-85. doi: 10.1016/j.heares.2019.01.007. Epub 2019 Jan 12.
2
Epigenomics in stress tolerance of plants under the climate change.
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
3
Overview of Histone Modification.
Adv Exp Med Biol. 2021;1283:1-16. doi: 10.1007/978-981-15-8104-5_1.
4
The tale of histone modifications and its role in multiple sclerosis.
Hum Genomics. 2018 Jun 22;12(1):31. doi: 10.1186/s40246-018-0163-5.
7
Interplay between different epigenetic modifications and mechanisms.
Adv Genet. 2010;70:101-41. doi: 10.1016/B978-0-12-380866-0.60005-8.
8
Histone modifications and cancer.
Adv Genet. 2010;70:57-85. doi: 10.1016/B978-0-12-380866-0.60003-4.
9
The landscape of histone modifications in epigenomics since 2020.
Epigenomics. 2022 Dec;14(23):1465-1477. doi: 10.2217/epi-2022-0437. Epub 2023 Jan 30.
10
Histone Modifications in Mouse Pronuclei and Consequences for Embryo Development.
Results Probl Cell Differ. 2022;70:397-415. doi: 10.1007/978-3-031-06573-6_14.

引用本文的文献

1
Deciphering the complex interplay of risk factors in type 2 diabetes mellitus: A comprehensive review.
Metabol Open. 2024 May 19;22:100287. doi: 10.1016/j.metop.2024.100287. eCollection 2024 Jun.
2
Harnessing the Full Potential of Multi-Omic Analyses to Advance the Study and Treatment of Chronic Kidney Disease.
Front Nephrol. 2022 Jun 27;2:923068. doi: 10.3389/fneph.2022.923068. eCollection 2022.
3
Dnmt1 is required for the development of auditory organs via cell cycle arrest and Fgf signalling.
Cell Prolif. 2022 May;55(5):e13225. doi: 10.1111/cpr.13225. Epub 2022 Mar 29.
4
Epigenetic Age Acceleration and Hearing: Observations From the Baltimore Longitudinal Study of Aging.
Front Aging Neurosci. 2021 Dec 15;13:790926. doi: 10.3389/fnagi.2021.790926. eCollection 2021.

本文引用的文献

2
Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy.
Eur J Pharmacol. 2018 Oct 15;837:8-24. doi: 10.1016/j.ejphar.2018.08.021. Epub 2018 Aug 18.
3
Spontaneous Hair Cell Regeneration Is Prevented by Increased Notch Signaling in Supporting Cells.
Front Cell Neurosci. 2018 May 4;12:120. doi: 10.3389/fncel.2018.00120. eCollection 2018.
4
CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development.
JCI Insight. 2018 Feb 22;3(4). doi: 10.1172/jci.insight.97440.
5
Chronic prenatal hypoxia impairs cochlear development, a mechanism involving connexin26 expression and promoter methylation.
Int J Mol Med. 2018 Feb;41(2):852-858. doi: 10.3892/ijmm.2017.3303. Epub 2017 Dec 1.
6
Histone Deacetylase Inhibitors Are Protective in Acute but Not in Chronic Models of Ototoxicity.
Front Cell Neurosci. 2017 Oct 24;11:315. doi: 10.3389/fncel.2017.00315. eCollection 2017.
7
The Repression of Atoh1 by Neurogenin1 during Inner Ear Development.
Front Mol Neurosci. 2017 Oct 20;10:321. doi: 10.3389/fnmol.2017.00321. eCollection 2017.
8
Inner ear manifestations in CHARGE: Abnormalities, treatments, animal models, and progress toward treatments in auditory and vestibular structures.
Am J Med Genet C Semin Med Genet. 2017 Dec;175(4):439-449. doi: 10.1002/ajmg.c.31587. Epub 2017 Oct 30.
9
NEUROG1 Regulates CDK2 to Promote Proliferation in Otic Progenitors.
Stem Cell Reports. 2017 Nov 14;9(5):1516-1529. doi: 10.1016/j.stemcr.2017.09.011. Epub 2017 Oct 12.
10
The histone deacetylase inhibitor sodium butyrate protects against noise-induced hearing loss in Guinea pigs.
Neurosci Lett. 2017 Nov 1;660:140-146. doi: 10.1016/j.neulet.2017.09.036. Epub 2017 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验