Lyon University, Carmen Laboratory; INSERM Unit 1060; INRA, Claude Bernard Lyon-1 University, Insa-Lyon, 69921, Oullins, France.
Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
Sci Rep. 2019 Jan 24;9(1):742. doi: 10.1038/s41598-018-36941-9.
Butyrate and R-β-hydroxybutyrate are two related short chain fatty acids naturally found in mammals. Butyrate, produced by enteric butyric bacteria, is present at millimolar concentrations in the gastrointestinal tract and at lower levels in blood; R-β-hydroxybutyrate, the main ketone body, produced by the liver during fasting can reach millimolar concentrations in the circulation. Both molecules have been shown to be histone deacetylase (HDAC) inhibitors, and their administration has been associated to an improved metabolic profile and better cellular oxidative status, with butyrate inducing PGC1α and fatty acid oxidation and R-β-hydroxybutyrate upregulating oxidative stress resistance factors FOXO3A and MT2 in mouse kidney. Because of the chemical and functional similarity between the two molecules, we compared here their impact on multiple cell types, evaluating i) histone acetylation and hydroxybutyrylation levels by immunoblotting, ii) transcriptional regulation of metabolic and inflammatory genes by quantitative PCR and iii) cytokine secretion profiles using proteome profiling array analysis. We confirm that butyrate is a strong HDAC inhibitor, a characteristic we could not identify in R-β-hydroxybutyrate in vivo nor in vitro. Butyrate had an extensive impact on gene transcription in rat myotubes, upregulating PGC1α, CPT1b, mitochondrial sirtuins (SIRT3-5), and the mitochondrial anti-oxidative genes SOD2 and catalase. In endothelial cells, butyrate suppressed gene expression and LPS-induced secretion of several pro-inflammatory genes, while R-β-hydroxybutyrate acted as a slightly pro-inflammatory molecule. Our observations indicate that butyrate induces transcriptional changes to a higher extent than R-β-hydroxybutyrate in rat myotubes and endothelial cells, in keep with its HDAC inhibitory activity. Also, in contrast with previous reports, R-β-hydroxybutyrate, while inducing histone β-hydroxybutyrylation, did not display a readily detectable HDAC inhibitor activity and exerted a slight pro-inflammatory action on endothelial cells.
丁酸盐和 R-β-羟丁酸是两种在哺乳动物中天然存在的相关短链脂肪酸。丁酸盐由肠道丁酸细菌产生,在胃肠道中以毫摩尔浓度存在,在血液中浓度较低;R-β-羟丁酸是肝脏在禁食期间产生的主要酮体,在循环中可以达到毫摩尔浓度。这两种分子都被证明是组蛋白去乙酰化酶(HDAC)抑制剂,它们的给药与改善代谢谱和更好的细胞氧化状态有关,丁酸盐诱导 PGC1α 和脂肪酸氧化,R-β-羟丁酸上调氧化应激抵抗因子 FOXO3A 和 MT2 在小鼠肾脏中。由于这两种分子在化学和功能上具有相似性,我们在这里比较了它们对多种细胞类型的影响,评估了 i)免疫印迹法检测组蛋白乙酰化和羟丁酸化水平,ii)定量 PCR 检测代谢和炎症基因的转录调节,以及 iii)使用蛋白质组谱分析评估细胞因子分泌谱。我们证实丁酸盐是一种强大的 HDAC 抑制剂,这一特性我们在体内和体外都无法在 R-β-羟丁酸中识别。丁酸盐对大鼠肌管中的基因转录有广泛的影响,上调 PGC1α、CPT1b、线粒体沉默调节蛋白(SIRT3-5)和线粒体抗氧化基因 SOD2 和过氧化氢酶。在内皮细胞中,丁酸盐抑制了几个促炎基因的表达和 LPS 诱导的分泌,而 R-β-羟丁酸则作为一种轻微的促炎分子起作用。我们的观察结果表明,丁酸盐在大鼠肌管和内皮细胞中诱导转录变化的程度比 R-β-羟丁酸更高,这与其 HDAC 抑制活性一致。此外,与之前的报道相反,R-β-羟丁酸虽然诱导组蛋白β-羟丁酸化,但没有表现出明显的 HDAC 抑制活性,并对内皮细胞产生轻微的促炎作用。