Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA.
Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
Acta Biomater. 2019 Jul 15;93:169-179. doi: 10.1016/j.actbio.2019.01.044. Epub 2019 Jan 25.
Delivery of osteoinductive factors such as bone morphogenetic protein 2 (BMP-2) has emerged as a prominent strategy to improve regeneration in bone grafting procedures. However, it remains challenging to identify a carrier that provides the requisite loading efficiency and release kinetics without compromising the mechanical properties of the bone graft. Previously, we reported on porous, polymerized high internal phase emulsion (polyHIPE) microspheres fabricated using controlled fluidics. Uniquely, this solvent-free method provides advantages over current microsphere fabrication strategies including in-line loading of growth factors to improve loading efficiency. In the current study, we utilized this platform to fabricate protein-loaded microspheres and investigated the effect of particle size (∼400 vs ∼800 μm) and pore size (∼15 vs 30 μm) on release profiles. Although there was no significant effect of these variables on the substantial burst release profile of the microspheres, the incorporation of the protein-loaded microspheres within the injectable polyHIPE resulted in a sustained release of protein from the bulk scaffold over a two-week period with minimal burst release. Bioactivity retention of encapsulated BMP-2 was confirmed first using a genetically-modified osteoblast reporter cell line. A functional assay with human mesenchymal stem cells established that the BMP-2 release from microspheres induced osteogenic differentiation. Finally, microsphere incorporation had minimal effect on the cure and compressive properties of an injectable polyHIPE bone graft. Overall, this work demonstrates that these microsphere-polyHIPE composites have strong potential to enhance bone regeneration through controlled release of BMP-2 and other growth factors. STATEMENT OF SIGNIFICANCE: This manuscript describes a method for solvent-free fabrication of porous microspheres from high internal phase emulsions using a controlled fluids setup. The principles of emulsion templating and fluid dynamics provide exceptional control of particle size and pore architecture. In addition to the advantage of solvent-free fabrication, this method provides in-line loading of protein directly into the pores of the microspheres with high loading efficiencies. The incorporation of the protein-loaded microspheres within an injectable polyHIPE scaffold resulted in a sustained release of protein over a two-week period with minimal burst release. Retention of BMP-2 bioactivity and incorporation of microspheres with minimal effect on scaffold compressive properties highlights the potential of these new bone grafts.
递送骨形态发生蛋白 2(BMP-2)等成骨因子已成为改善骨移植物中再生的突出策略。然而,要找到一种既能提供必要的载药效率和释放动力学,又不影响骨移植物机械性能的载体仍然具有挑战性。以前,我们报道了使用受控流体制备的多孔聚合高内相乳液(polyHIPE)微球。这种无溶剂的方法具有优于当前微球制造策略的优势,包括在线加载生长因子以提高载药效率。在本研究中,我们利用该平台制备了载蛋白微球,并研究了粒径(400 与800 μm)和孔径(~15 与 30 μm)对释放曲线的影响。尽管这些变量对微球的大量突释释放曲线没有显著影响,但将载蛋白微球掺入可注射的 polyHIPE 中可使蛋白质从块状支架中持续释放两周,突释释放最小。首先使用基因修饰的成骨细胞报告细胞系证实了包封的 BMP-2 的生物活性保留。与人间充质干细胞的功能测定建立了微球中 BMP-2 释放诱导成骨分化的关系。最后,微球的掺入对可注射的 polyHIPE 骨移植物的固化和压缩性能几乎没有影响。总的来说,这项工作表明,这些微球-polyHIPE 复合材料具有通过控制 BMP-2 和其他生长因子的释放来增强骨再生的巨大潜力。
本文描述了一种使用受控流体装置从高内相乳液中制备无溶剂多孔微球的方法。乳液模板和流体动力学的原理提供了对粒径和孔结构的出色控制。除了无溶剂制造的优势外,该方法还可以将蛋白质直接在线加载到微球的孔中,具有高载药效率。将载蛋白微球掺入可注射的 polyHIPE 支架中可在两周的时间内实现蛋白质的持续释放,突释释放最小。BMP-2 生物活性的保留以及微球的掺入对支架压缩性能的影响最小,突出了这些新型骨移植物的潜力。