1 Department of Orthopedics, University Medical Center , Utrecht, The Netherlands .
2 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota.
Tissue Eng Part A. 2018 May;24(9-10):819-829. doi: 10.1089/ten.TEA.2017.0229. Epub 2018 Apr 23.
Off-the-shelf availability in large quantities, drug delivery functionality, and modifiable chemistry and mechanical properties make synthetic polymers highly suitable candidates for bone grafting. However, most synthetic polymers lack the ability to support cell attachment, proliferation, migration, and differentiation, and ultimately tissue formation. Incorporating anionic peptides into the polymer that mimics acidic proteins, which contribute to biomineralization and cellular attachment, could enhance bone formation. Therefore, this study investigates the effect of a phosphate functional group on osteoconductivity and BMP-2-induced bone formation in an injectable and biodegradable oligo[(polyethylene glycol) fumarate] (OPF) hydrogel. Three types of OPF hydrogels were fabricated using 0%, 20%, or 40% Bis(2-(methacryloyloxy)ethyl) phosphate creating unmodified OPF-noBP and phosphate-modified OPF-BP20 and OPF-BP40, respectively. To account for the osteoinductive effect of various BMP-2 release profiles, two different release profiles (i.e., different ratios of burst and sustained release) were obtained by varying the BMP-2 loading method. To investigate the osteoconductive effect of phosphate modification, unloaded OPF composites were assessed for bone formation in a bone defect model after 3, 6, and 9 weeks. To determine the effect of the hydrogel phosphate modification on BMP-2-induced bone formation, BMP-2 loaded OPF composites with differential BMP-2 release were analyzed after 9 weeks of subcutaneous implantation in rats. The phosphate-modified OPF hydrogels (OPF-BP20 and OPF-BP40) generated significantly more bone in an orthotopic defect compared to the unmodified hydrogel (OPF-noBP). Furthermore, the phosphate functionalized surface-enhanced BMP-2-induced ectopic bone formation regardless of the BMP-2 release profile. In conclusion, this study clearly shows that phosphate functional groups improve the osteoconductive properties of OPF and enhanced BMP-2-induced bone formation. Therefore, functionalizing hydrogels with phosphate groups by crosslinking monomers into the hydrogel matrix could provide a valuable method for improving polymer characteristics and holds great promise for bone tissue engineering.
大量现货供应、药物输送功能以及可修改的化学和机械性能使合成聚合物成为非常适合骨移植的候选材料。然而,大多数合成聚合物缺乏支持细胞附着、增殖、迁移和分化以及最终组织形成的能力。将模拟酸性蛋白质的阴离子肽掺入聚合物中,这些蛋白质有助于生物矿化和细胞附着,可以增强骨形成。因此,本研究探讨了磷酸基团对可注射和可生物降解的低聚[(聚乙二醇)马来酸酯](OPF)水凝胶的骨传导性和 BMP-2 诱导的骨形成的影响。使用 0%、20%或 40%双(2-(甲基丙烯酰氧基)乙基)磷酸制备三种类型的 OPF 水凝胶,分别创建未修饰的 OPF-noBP 和磷酸修饰的 OPF-BP20 和 OPF-BP40。为了说明各种 BMP-2 释放曲线的成骨诱导作用,通过改变 BMP-2 加载方法获得了两种不同的释放曲线(即,突发释放和持续释放的不同比例)。为了研究磷酸修饰的骨传导作用,在 3、6 和 9 周后,在骨缺损模型中评估了未负载的 OPF 复合材料的骨形成情况。为了确定水凝胶磷酸修饰对 BMP-2 诱导的骨形成的影响,在大鼠皮下植入 9 周后,分析了具有不同 BMP-2 释放的负载 BMP-2 的 OPF 复合材料。与未修饰的水凝胶(OPF-noBP)相比,磷酸化 OPF 水凝胶(OPF-BP20 和 OPF-BP40)在原位缺损中产生了更多的骨。此外,磷酸功能化表面增强了 BMP-2 诱导的异位骨形成,而与 BMP-2 释放曲线无关。总之,本研究清楚地表明,磷酸基团可改善 OPF 的骨传导特性并增强 BMP-2 诱导的骨形成。因此,通过将交联单体交联到水凝胶基质中来对水凝胶进行磷酸基团功能化可能是一种改善聚合物特性的有价值的方法,为骨组织工程带来了巨大的希望。