Suppr超能文献

从Neurospora 中了解到的动物分子钟原理。

Principles of the animal molecular clock learned from Neurospora.

机构信息

Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.

Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.

出版信息

Eur J Neurosci. 2020 Jan;51(1):19-33. doi: 10.1111/ejn.14354. Epub 2019 Feb 21.

Abstract

Study of Neurospora, a model system evolutionarily related to animals and sharing a circadian system having nearly identical regulatory architecture to that of animals, has advanced our understanding of all circadian rhythms. Work on the molecular bases of the Oscillator began in Neurospora before any clock genes were cloned and provided the second example of a clock gene, frq, as well as the first direct experimental proof that the core of the Oscillator was built around a transcriptional translational negative feedback loop (TTFL). Proof that FRQ was a clock component provided the basis for understanding how light resets the clock, and this in turn provided the generally accepted understanding for how light resets all animal and fungal clocks. Experiments probing the mechanism of light resetting led to the first identification of a heterodimeric transcriptional activator as the positive element in a circadian feedback loop, and to the general description of the fungal/animal clock as a single step TTFL. The common means through which DNA damage impacts the Oscillator in fungi and animals was first described in Neurospora. Lastly, the systematic study of Output was pioneered in Neurospora, providing the vocabulary and conceptual framework for understanding how Output works in all cells. This model system has contributed to the current appreciation of the role of Intrinsic Disorder in clock proteins and to the documentation of the essential roles of protein post-translational modification, as distinct from turnover, in building a circadian clock.

摘要

研究模式生物链孢霉(Neurospora)有助于增进我们对所有生物钟的理解。链孢霉在进化上与动物有关,并且拥有与动物几乎相同的生物钟调控架构的昼夜节律系统。在克隆任何生物钟基因之前,人们就已经开始在链孢霉上研究振荡器的分子基础,这为第二个生物钟基因 frq 提供了证据,也首次直接证明了振荡器的核心是围绕转录翻译负反馈环(TTFL)构建的。FRQ 是生物钟组成部分的证据为理解光如何重置生物钟提供了基础,而这反过来又为理解光如何重置所有动物和真菌的生物钟提供了普遍接受的依据。探究光重置机制的实验导致了第一个异源二聚体转录激活因子作为昼夜反馈回路中的正元件的鉴定,并将真菌/动物生物钟一般描述为单步 TTFL。DNA 损伤影响真菌和动物振荡器的共同机制首先在链孢霉中被描述。最后,Neurospora 开创了输出的系统研究,为理解输出在所有细胞中如何工作提供了词汇和概念框架。这个模型系统有助于人们理解时钟蛋白中内在无序的作用,并记录了蛋白质翻译后修饰(而非周转率)在构建生物钟方面的重要作用。

相似文献

1
Principles of the animal molecular clock learned from Neurospora.从Neurospora 中了解到的动物分子钟原理。
Eur J Neurosci. 2020 Jan;51(1):19-33. doi: 10.1111/ejn.14354. Epub 2019 Feb 21.
5
The neurospora circadian system.粗糙脉孢菌生物钟系统。
J Biol Rhythms. 2004 Oct;19(5):414-24. doi: 10.1177/0748730404269116.
9
Dissecting the mechanisms of the clock in Neurospora.剖析粗糙脉孢菌生物钟的机制。
Methods Enzymol. 2015;551:29-52. doi: 10.1016/bs.mie.2014.10.009. Epub 2014 Dec 26.

引用本文的文献

1
Rhythmidia: A modern tool for circadian period analysis of filamentous fungi.节奏菌:丝状真菌生物钟周期分析的现代工具。
PLoS Comput Biol. 2024 Aug 5;20(8):e1012167. doi: 10.1371/journal.pcbi.1012167. eCollection 2024 Aug.
10

本文引用的文献

4
Cold Temperatures Fire up Circadian Neurons.低温激活生物钟神经元。
Cell Metab. 2018 May 1;27(5):951-953. doi: 10.1016/j.cmet.2018.04.016.
7
Guidelines for Genome-Scale Analysis of Biological Rhythms.生物节律的全基因组分析指南。
J Biol Rhythms. 2017 Oct;32(5):380-393. doi: 10.1177/0748730417728663. Epub 2017 Nov 3.
8
Natural Variation of the Circadian Clock in Neurospora.生物钟在 Neurospora 中的自然变化。
Adv Genet. 2017;99:1-37. doi: 10.1016/bs.adgen.2017.09.001. Epub 2017 Oct 12.
9
Macromolecular Assemblies of the Mammalian Circadian Clock.哺乳动物生物钟的大分子组装体
Mol Cell. 2017 Sep 7;67(5):770-782.e6. doi: 10.1016/j.molcel.2017.07.017.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验