Suppr超能文献

基于深度学习的单次傅里叶叠层显微镜照明模式设计

Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy.

作者信息

Cheng Yi Fei, Strachan Megan, Weiss Zachary, Deb Moniher, Carone Dawn, Ganapati Vidya

出版信息

Opt Express. 2019 Jan 21;27(2):644-656. doi: 10.1364/OE.27.000644.

Abstract

Fourier ptychographic microscopy allows for the collection of images with a high space-bandwidth product at the cost of temporal resolution. In Fourier ptychographic microscopy, the light source of a conventional widefield microscope is replaced with a light-emitting diode (LED) matrix, and multiple images are collected with different LED illumination patterns. From these images, a higher-resolution image can be computationally reconstructed without sacrificing field-of-view. We use deep learning to achieve single-shot imaging without sacrificing the space-bandwidth product, reducing the acquisition time in Fourier ptychographic microscopy by a factor of 69. In our deep learning approach, a training dataset of high-resolution images is used to jointly optimize a single LED illumination pattern with the parameters of a reconstruction algorithm. Our work paves the way for high-throughput imaging in biological studies.

摘要

傅里叶叠层显微镜能够以牺牲时间分辨率为代价来采集具有高空间带宽积的图像。在傅里叶叠层显微镜中,传统宽视场显微镜的光源被发光二极管(LED)矩阵取代,并且利用不同的LED照明模式采集多幅图像。从这些图像中,可以通过计算重建出更高分辨率的图像,而不会牺牲视场。我们利用深度学习实现了不牺牲空间带宽积的单次成像,将傅里叶叠层显微镜中的采集时间缩短了69倍。在我们的深度学习方法中,使用高分辨率图像的训练数据集来联合优化单个LED照明模式以及重建算法的参数。我们的工作为生物学研究中的高通量成像铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验