Suppr超能文献

基于多尺度深度残差网络的傅里叶叠层显微镜重建

Fourier ptychographic microscopy reconstruction with multiscale deep residual network.

作者信息

Zhang Jizhou, Xu Tingfa, Shen Ziyi, Qiao Yifan, Zhang Yizhou

出版信息

Opt Express. 2019 Mar 18;27(6):8612-8625. doi: 10.1364/OE.27.008612.

Abstract

Fourier ptychographic microscopy (FPM) is a newly developed microscopic technique for large field of view, high-resolution and quantitative phase imaging by combining the techniques from ptychographic imaging, aperture synthesizing and phase retrieval. In FPM, an LED array is utilized to illuminate the specimen from different angles and the corresponding intensity images are synthesized to reconstruct a high-resolution complex field. As a flexible and low-cost approach to achieve high-resolution, wide-field and quantitative phase imaging, FPM is of enormous potential in biomedical applications such as hematology and pathology. Conventionally, the FPM reconstruction problem is solved by using a phase retrieval method, termed Alternate Projection. By iteratively updating the Fourier spectrum with low-resolution-intensity images, the result converges to a high-resolution complex field. Here we propose a new FPM reconstruction framework with deep learning methods and design a multiscale, deep residual neural network for FPM reconstruction. We employ the widely used open-source deep learning library PyTorch to train and test our model and carefully choose the hyperparameters of our model. To train and analyze our model, we build a large-scale simulation dataset with an FPM imaging model and an actual dataset captured with an FPM system. The simulation dataset and actual dataset are separated as training datasets and test datasets, respectively. Our model is trained with the simulation training dataset and fine tuned with the fine-tune dataset, which contains actual training data. Both our model and the conventional method are tested on the simulation test dataset and the actual test dataset to evaluate the performances. We also show the reconstruction result of another neural network-based method for comparison. The experiments demonstrate that our model achieves better reconstruction results and consumes much less time than conventional methods. The results also point out that our model is more robust under system aberrations such as noise and blurring (fewer intensity images) compared with conventional methods.

摘要

傅里叶叠层显微镜术(FPM)是一种新开发的显微技术,它通过结合叠层成像、孔径合成和相位恢复技术,实现大视场、高分辨率和定量相位成像。在FPM中,利用发光二极管阵列从不同角度照射样本,并合成相应的强度图像以重建高分辨率复场。作为一种实现高分辨率、宽视场和定量相位成像的灵活且低成本的方法,FPM在血液学和病理学等生物医学应用中具有巨大潜力。传统上,FPM重建问题通过一种称为交替投影的相位恢复方法来解决。通过用低分辨率强度图像迭代更新傅里叶频谱,结果收敛到高分辨率复场。在此,我们提出一种基于深度学习方法的新FPM重建框架,并设计了一个用于FPM重建的多尺度深度残差神经网络。我们使用广泛使用的开源深度学习库PyTorch来训练和测试我们的模型,并仔细选择模型的超参数。为了训练和分析我们的模型,我们用FPM成像模型构建了一个大规模模拟数据集以及用FPM系统捕获的一个实际数据集。模拟数据集和实际数据集分别作为训练数据集和测试数据集。我们的模型用模拟训练数据集进行训练,并用包含实际训练数据的微调数据集进行微调。我们的模型和传统方法都在模拟测试数据集和实际测试数据集上进行测试以评估性能。我们还展示了另一种基于神经网络方法的重建结果以作比较。实验表明,我们的模型比传统方法取得了更好的重建结果,且耗时少得多。结果还指出,与传统方法相比,我们的模型在诸如噪声和模糊(强度图像较少)等系统像差情况下更稳健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验