Suppr超能文献

磷酸盐饥饿改变了非生物胁迫诱导的根细胞质游离钙的增加。

Phosphate Starvation Alters Abiotic-Stress-Induced Cytosolic Free Calcium Increases in Roots.

机构信息

Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.

Department of Biosciences, University of Milan, 20133 Milan, Italy.

出版信息

Plant Physiol. 2019 Apr;179(4):1754-1767. doi: 10.1104/pp.18.01469. Epub 2019 Jan 29.

Abstract

Phosphate (Pi) deficiency strongly limits plant growth, and plant roots foraging the soil for nutrients need to adapt to optimize Pi uptake. Ca is known to signal in root development and adaptation but has to be tightly controlled, as it is highly toxic to Pi metabolism. Under Pi starvation and the resulting decreased cellular Pi pool, the use of cytosolic free Ca ([Ca]) as a signal transducer may therefore have to be altered. Employing aequorin-expressing Arabidopsis (), we show that Pi starvation, but not nitrogen starvation, strongly dampens the [Ca] increases evoked by mechanical, salt, osmotic, and oxidative stress as well as by extracellular nucleotides. The altered root [Ca] response to extracellular ATP manifests during seedling development under chronic Pi deprivation but can be reversed by Pi resupply. Employing ratiometric imaging, we delineate that Pi-starved roots have a normal response to extracellular ATP at the apex but show a strongly dampened [Ca] response in distal parts of the root tip, correlating with high reactive oxygen species levels induced by Pi starvation. Excluding iron, as well as Pi, rescues this altered [Ca] response and restores reactive oxygen species levels to those seen under nutrient-replete conditions. These results indicate that, while Pi availability does not seem to be signaled through [Ca], Pi starvation strongly affects stress-induced [Ca] signatures. These data reveal how plants can integrate nutritional and environmental cues, adding another layer of complexity to the use of Ca as a signal transducer.

摘要

磷酸盐(Pi)缺乏强烈限制植物生长,植物根系在土壤中寻找养分需要适应以优化 Pi 吸收。Ca 已知在根系发育和适应中起信号作用,但必须严格控制,因为它对 Pi 代谢具有高度毒性。在 Pi 饥饿和由此导致的细胞内 Pi 池减少的情况下,因此可能需要改变细胞溶质游离 Ca([Ca])作为信号转导物的用途。我们使用表达萤光素的拟南芥(Arabidopsis)表明,Pi 饥饿但不是氮饥饿强烈抑制了机械、盐、渗透和氧化应激以及细胞外核苷酸引起的 [Ca]增加。在慢性 Pi 剥夺下的幼苗发育过程中,改变的根 [Ca]对细胞外 ATP 的反应表现出来,但可以通过 Pi 再供应来逆转。通过比率成像,我们描绘出 Pi 饥饿的根在根尖处对细胞外 ATP 具有正常的反应,但在根尖的远端部分显示出强烈减弱的 [Ca]反应,与 Pi 饥饿诱导的高活性氧水平相关。排除铁和 Pi 都可以挽救这种改变的 [Ca]反应,并将活性氧水平恢复到营养充足条件下的水平。这些结果表明,虽然 Pi 可用性似乎不是通过 [Ca]信号传递的,但 Pi 饥饿强烈影响应激诱导的 [Ca]特征。这些数据揭示了植物如何整合营养和环境线索,为 Ca 作为信号转导物的使用增加了另一层复杂性。

相似文献

3
Phosphate-Dependent Root System Architecture Responses to Salt Stress.磷依赖型根系结构对盐胁迫的响应。
Plant Physiol. 2016 Oct;172(2):690-706. doi: 10.1104/pp.16.00712. Epub 2016 May 20.
10
Iron availability modulates the root calcium signature evoked by exogenous ATP.铁的可用性调节由外源 ATP 引发的根钙信号。
Plant Signal Behav. 2019;14(9):1640563. doi: 10.1080/15592324.2019.1640563. Epub 2019 Jul 13.

引用本文的文献

2
Pattern Recognition Receptors in Plant Immunity.植物免疫中的模式识别受体
Adv Exp Med Biol. 2025;1476:425-451. doi: 10.1007/978-3-031-85340-1_17.
5
ATP homeostasis and signaling in plants.植物中的 ATP 稳态和信号转导。
Plant Commun. 2024 Apr 8;5(4):100834. doi: 10.1016/j.xplc.2024.100834. Epub 2024 Feb 7.
8
Calcium signaling in plant mineral nutrition: From uptake to transport.植物矿物质营养中的钙信号:从吸收到运输。
Plant Commun. 2023 Nov 13;4(6):100678. doi: 10.1016/j.xplc.2023.100678. Epub 2023 Aug 26.
10
Phosphate-deprivation and damage signalling by extracellular ATP.细胞外ATP介导的磷酸盐剥夺与损伤信号传导
Front Plant Sci. 2023 Jan 12;13:1098146. doi: 10.3389/fpls.2022.1098146. eCollection 2022.

本文引用的文献

1
Cellular Ca Signals Generate Defined pH Signatures in Plants.细胞钙信号在植物中产生特定的 pH 特征。
Plant Cell. 2018 Nov;30(11):2704-2719. doi: 10.1105/tpc.18.00655. Epub 2018 Oct 29.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验